THE UNIVERSITY OF RHODE ISLAND

University of Rhode Island DigitalCommons@URI

Graduate School of Oceanography Faculty Publications

Graduate School of Oceanography

2019

Trophic position and foraging ecology of Ross, Weddell, and crabeater seals revealed by compound-specific isotope analysis

Emily K. Brault

Paul L. Koch

See next page for additional authors

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs

This is a pre-publication author manuscript of the final, published article.

Authors

Emily K. Brault, Paul L. Koch, Daniel P. Costa, Matthew D. McCarthy, Luis A. Hückstädt, Kimberly Goetz, Kelton W. McMahon, Michael G. Goebel, Olle Karlsson, Jonas Teilmann, Tero Härkönen, and Karin Hårding

1	TROPHIC POSITION AND FORAGING ECOLOGY OF ROSS, WEDDELL, AND
2	CRABEATER SEALS REVEALED BY COMPOUND-SPECIFIC ISOTOPE ANALYSIS
3	
4	Emily K. Brault ^{1*} , Paul L. Koch ² , Daniel P. Costa ³ , Matthew D. McCarthy ¹ , Luis A. Hückstädt ³ ,
5	Kimberly Goetz ⁴ , Kelton W. McMahon ⁵ , Michael E. Goebel ⁶ , Olle Karlsson ⁷ , Jonas Teilmann ⁸ ,
6	Tero Härkönen ⁷ , and Karin Hårding ⁹
7	
8	¹ Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa
9	Cruz, CA 95064, USA, ebrault@ucsc.edu
10	² Earth and Planetary Sciences Department, University of California, Santa Cruz, 1156 High
11	Street, Santa Cruz, CA 95064, USA
12	³ Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road,
13	Santa Cruz, CA 95064, USA
14	⁴ National Institute of Water and Atmospheric Research, 301 Evans Bay Parade, Wellington
15	6021, New Zealand
16	⁵ Graduate School of Oceanography, University of Rhode Island, 215 S Ferry Rd, Narragansett,
17	RI 02882
18	⁶ Antarctic Ecosystem Research Division, NOAA Fisheries, Southwest Fisheries Science Center,
19	8901 La Jolla Shores Dr., La Jolla, CA 92037, USA
20	⁷ Swedish Museum of Natural History, Box 50007, 10405 Stockholm Stockholm, Sweden
21	⁸ Department of Bioscience - Marine Mammal Research, Aarhus University, Frederiksborgvej
22	399, Building 7425, P1.26, 4000 Roskilde, Denmark
23	⁹ Department of Biological and Environmental Sciences, University of Gothenburg, Box 463,

24	SE-405 30 Gothenburg, Sweden
25	*Corresponding author
26	
27	ABSTRACT
28	
29	Ross seals (Ommatophoca rossii) are one of the least studied marine mammals, with little

30 known about their foraging ecology. Research to date using bulk stable isotope analysis suggests 31 that Ross seals have a trophic position intermediate between that of the Weddell (Leptonychotes 32 weddellii) and crabeater (Lobodon carcinophaga) seals. However, consumer bulk isotope values 33 not only reflect trophic dynamics, but also variations in baseline isotope values, which can be 34 substantial. Here, we use a compound specific isotope analysis of amino acids (CSI-AA) to 35 separate isotopic effects of a shifting baseline versus trophic structure on the foraging ecology of 36 these ecologically important, but poorly understood Antarctic pinnipeds. We find that all three seals use different foraging habitats; Ross seals forage in a pelagic food web distinct from that of 37 38 crabeater and Weddell seals. Crabeater and Weddell seals are foraging within similar food webs 39 closer to shore. However, isotopic evidence suggests that crabeater seals are likely following sea 40 ice, while Weddell seals target productive areas of the continental shelf of Western Antarctica. In 41 addition, our CSI-AA data indicate that Ross seals have a high trophic position equivalent to that of Weddell seals, contrary to prior conclusions from nitrogen isotope results on bulk tissues. 42 43 CSI-AA indicates that crabeater seals are at a trophic position lower than that of Ross and 44 Weddell seals, consistent with a krill-dominated diet. Our results redefine the view of the Ross 45 seal trophic dynamics and foraging ecology, while also highlighting the importance of 46 quantifying baseline isotope variations in foraging studies.

47	
48	KEYWORDS
49	
50	Ross seal, Weddell seal, Crabeater seal, Compound specific isotopes, amino acids, Antarctica,
51	Foraging ecology, Trophic dynamics
52	INTRODUCTION
53	
54	The Ross seal (Ommatophoca rossii) is one of the least studied marine mammals (Reeves
55	et al. 2008, Bengtson et al. 2011). The total population estimate for this species is around
56	200,000, considerably less than the estimates for other Antarctic true seals, which are 10 to 15
57	million individuals for crabeater seals (Lobodon carcinophaga) and approximately one million
58	individuals for Weddell seals (Leptonychotes weddellii) (Laws 1977, Reeves et al. 2008,
59	Bengtson et al. 2011). With individuals likely spending most of their time at sea and in habitats
60	that are logistically challenging to access, the Ross seal is not commonly observed. Several keys
61	aspects of their biology remain poorly understood, including their preferred prey, foraging
62	habitat, and behavior. In contrast, many studies have been conducted on crabeater and Weddell
63	seals and, thus, more information is available on their ecology.
64	Conventional techniques for studying an animal's diet, such as scat and stomach content
65	analysis, have significant limitations when applied to Antarctic pinnipeds. These methods
66	capture only a snapshot of a predator's diet, perhaps one to two days (Dellinger and Trillmich
67	1988, Burns et al. 1998). In addition, since soft tissues are more completely digested than hard
68	tissues, resulting in biases towards prey with indigestible hard parts (Burns et al. 1998, Staniland

69 2002, Arim and Naya 2003, Yonezaki et al. 2003). Given these drawbacks, recent research on
70 Antarctic seal ecology has often used bulk isotope values.

Measurements of bulk tissue carbon (δ^{13} C) and nitrogen (δ^{15} N) isotope values (i.e., the 71 72 weighted average of all components within in a tissue) have been used to indicate a predator's foraging region and trophic position (Boecklen et al. 2011). This approach has the advantage of 73 providing an integrated view of an animal's diet over longer time scales (weeks to years 74 75 depending on the tissue) than the traditional procedures (Vander Zanden et al. 2015). Carbon isotope values show little ¹³C-enrichment with trophic transfer. Thus, consumer δ^{13} C values are 76 often thought to closely reflect values at the base of marine food webs, making them useful for 77 studying the foraging areas of a predator. Spatial changes in the δ^{13} C of phytoplankton (often 78 referred to as "baseline" δ^{13} C values) reflect variations in dissolved inorganic carbon δ^{13} C 79 80 values, dissolved CO₂ concentrations, temperature, cell size and geometry, internal biological 81 parameters (e.g., growth rate), and CO₂ drawdown (reviewed in McMahon et al. 2013). Provided the primary processes driving variation are known, bulk δ^{13} C values of an animal can give 82 83 valuable information on its foraging habitat. The Southern Ocean is known to have considerable spatial variation in baseline $\delta^{13}C$ ($\delta^{13}C_{\text{baseline}}$) values (Rau et al. 1982, Quillfeldt et al. 2010, 84 Brault et al. 2018). Several studies have observed decreasing δ^{13} C values with increasing 85 latitude, with offsets between about 55 °S and 79 °S of approximately 3 ‰, largely reflecting 86 87 variations in sea surface temperature (Rau et al. 1982, Graham et al. 2010, Quillfeldt et al. 2010, 88 Magozzi et al. 2017, Brault et al. 2018).

In contrast to carbon isotopes, trophic transfers considerably affect an animal's $\delta^{15}N$ values. Since a consumer's tissues become enriched in ¹⁵N by ~ 2-5 ‰ with each trophic step (e.g., primary producers to herbivores to carnivores) due to the preferential loss of ¹⁴N during

amino acid metabolism (Minagawa and Wada, 1984), δ^{15} N values are often used to indicate an 92 animal's trophic position. However, variations in baseline δ^{15} N values (δ^{15} N_{baseline}) also occur 93 94 and are passed on, with additional change due to trophic transfers, to upper trophic level 95 predators (McMahon et al. 2013). Nutrient source (e.g., nitrate, ammonium, or N₂ fixation), microbial transformations (e.g., denitrification), and extent of nitrogen pool drawdown in a given 96 environment can all strongly impact primary producer δ^{15} N values (reviewed in McMahon et al. 97 2013). If variations in these factors are well understood, then the bulk δ^{15} N values of a consumer 98 99 provide insights into its foraging region and trophic position (Post 2002). As with carbon, substantial spatial variations in δ^{15} N_{baseline} values occur in the Southern Ocean (DiFiore et al. 100 101 2006, DiFiore et al. 2009, Somes et al. 2010, Jaeger et al. 2010, Brault et al. 2018). Low 102 δ^{15} N_{baseline} values have been found for much of the Southern Ocean except in areas near the continent with extensive coastal open water polynya "hot spots" (Arrigo and Van Dijken 2003), 103 104 where the baseline is up to ~ 3 % higher than in pelagic regions (DiFiore et al. 2006, DiFiore et 105 al. 2009, Brault et al. 2018). This pattern likely derives from changes in the extent of nutrient drawdown due to enhanced primary productivity, the main process influencing δ^{15} N_{haseline} in the 106 107 Southern Ocean since it is a high nutrient-low chlorophyll (HNLC) region (Brault et al. 2018). 108 Although much remains unknown, especially regarding the behaviors and movements of 109 the Ross seal, recent studies have furthered our understanding of Antarctic seal ecology. Isotopic 110 measurements, coupled with traditional ecological methods, have indicated that Weddell seals 111 forage near the top of the Antarctic food web, consuming diverse diets of fish, cephalopods, and 112 invertebrates (Burns et al. 1998, Plötz 2001, Lake et al. 2003, Goetz et al. 2017). Researchers 113 have debated the contribution of the upper trophic level prey species, in particular the Antarctic 114 toothfish (Dissotichus mawsoni), to Weddell seal diets with some studies suggesting a substantial

115	contribution of <i>D. mawsoni</i> (Ponganis and Stockard 2007, Ainley and Siniff 2009, Goetz et al.
116	2017). Hard parts of <i>D. mawsoni</i> are not consumed and, thus, not detected via scat and stomach
117	content analyses, which have been used for much of the prior research on Weddell seal foraging
118	ecology. Recently, Goetz et al. (2017) assessed Weddell seal for aging ecology with bulk $\delta^{13}C$
119	and $\delta^{15}N$ measurements of vibrissae and red blood cells from Ross Sea specimens. They reported
120	considerable individual variability in diet and that Antarctic silverfish (Pleuragamma
121	antarcticum) and cod icefishes (Trematomus species) were the primary prey consumed by
122	Weddell seals. Overall, <i>D. mawsoni</i> contribute less than 2 % to the Weddell seal diet. However,
123	D. mawsoni may become increasingly important with age and at certain times in the life cycle,
124	such as during reproduction and molting, since this fish has a high fat content and energy density
125	(Goetz et al. 2017). Additionally, Goetz et al. (2017) noted temporal diet shifts – likely in
126	response to sea ice dynamics affecting prey abundances.
127	Crabeater seals occupy a much lower trophic level than Weddell seals, with diets
128	dominated by Antarctic krill (Euphausiia superba), as evidenced by the results of both scat and
129	stomach content analyses as well as bulk isotopic analysis (Laws 1977, Rau et al. 1992, Burns et
130	al. 2004, Zhao et al. 2004, Burns et al. 2008, Aubail et al. 2011). Recent work by Hückstädt et al.
131	(2012a) has revealed temporal variability in crabeater seal diet composition via bulk $\delta^{13}C$ and
132	δ^{15} N measurements of vibrissae. The <i>E. superba</i> contribution ranged from 81 % to 95 %, likely
133	in response to climate shifts affecting krill abundances. The authors also reported significant
134	variation in $\delta^{13}C$ values with body mass (increasing $\delta^{13}C$ values with increasing body mass) and
135	season (highest δ^{13} C values in the austral winter) that they suggested might result from changes
136	in $\delta^{13}C_{\text{baseline}}$ values associated with temporal and/or spatial shifts between pelagic phytoplankton
137	and sea ice phytoplankton communities (Hückstädt et al. 2012a).

Only a small number of studies have examined Ross seal foraging ecology. Dive records 138 139 suggest that these animals typically dive from 100 to 300 m (maximum depth of 792 m) in 140 search of mesopelagic squid and fish (Bengtson and Stewart 1997, Blix and Nordøy 2007). 141 Analysis of Ross seal stomach contents showed that Antarctic silverfish (*Pleurogramma* 142 antarcticum) and glacial squid (Psychroteuthis glacialis) were found in varying proportions 143 (Skinner and Klages, 1994). Arcalís-Planas et al. (2015) suggested little use of sea ice by Ross 144 seals, based on telemetry and remote sensing data. Seals tracked in this study generally 145 remained in pelagic regions except for haul outs on ice to molt (from December to January) and 146 breed (from late October to mid-November). During their extended pelagic period (February to 147 mid-October), Ross seals remained an average ~ 840 km (range 587 to 1,282 km) seaward from the ice edge (Arcalis-Planas et al. 2015). Bulk δ^{13} C and δ^{15} N isotope measurements place the 148 149 Ross seal a trophic level intermediate between Weddell seals and crabeater seals (Rau et al. 150 1992, Zhao et al. 2004, Aubail et al. 2011). Thus, bulk isotope results to date suggest that Ross 151 seals consume mostly squid and fish, but with a contribution from lower trophic level prev like 152 *E. superba* (Rau et al. 1992, Zhao et al. 2004, Aubail et al. 2011).

153 While these bulk isotope approaches have shed new light on the foraging ecology of 154 these Antarctic pinnipeds, it is critical to remember that the Southern Ocean exhibits strong spatial gradients in both δ^{13} C_{baseline} and δ^{15} N_{baseline} values (DiFiore et al. 2006, DiFiore et al. 155 156 2009, Jaeger et al. 2010, Somes et al. 2010, Brault et al. 2018), suggesting that we likely need to 157 explicitly tease apart the relative influences of trophic dynamics and baseline variation on seal 158 isotope values. For instance, Ross seals may spend more time in pelagic regions than other true Antarctic seals (Arcalís-Planas et al. 2015), and thus forage in areas with lower $\delta^{15}N_{\text{baseline}}$ values 159 160 than the nearshore regions of Weddell and crabeater seals (DiFiore et al. 2006, DiFiore et al.

2009, Brault et al. 2018). If so, not accounting for spatial variation in the δ^{15} N_{baseline} would result 161 162 in Ross seals being assigned a lower trophic position than species foraging nearer the continent. 163 Compound-specific isotopic analysis of amino acids (CSI-AA) has opened new doors to 164 studying the foraging ecology and trophic dynamics of marine predators (e.g., Graham et al. 2010). Since only certain amino acids become enriched in ¹⁵N with increasing trophic level 165 ("trophic" amino acids), while others ("source" amino acids) do not, impacts of $\delta^{15}N_{\text{baseline}}$ 166 variation and trophic position on consumer δ^{15} N values can be disentangled using this technique 167 168 (Ohkouchi et al. 2017). Glutamic acid/glutamine (Glu) and phenylalanine (Phe) are widely 169 considered the most representative trophic and source amino acids, respectively, with Phe δ^{15} N values typically used a proxy for baseline isotope values, and Phe and Glu δ^{15} N values (δ^{15} N_{Phe} 170 and $\delta^{15}N_{Gh}$, correspondingly) used together to estimate an organism's trophic position (TP) 171 172 internally indexed to the baseline (Ohkouchi et al. 2017). Proline (Pro) has also been shown to be a reliable trophic amino acid, however, with less variability than Glu for trophic ¹⁵N-enrichment 173 174 factors between organisms (McMahon et al. 2015). As a consequence, Pro and Phe may 175 represent a new CSI-AA combination that provides more ecologically realistic TP estimates for 176 higher trophic level consumers (McMahon and McCarthy 2016). 177 Here, we report the first CSI-AA data for modern Ross, Weddell, and crabeater seals to 178 refine our understanding of the trophic dynamics and foraging ecology of these important 179 Antarctic predators. In particular, CSI-AA allows us to directly examine changes in baseline

180 δ^{15} N values linked to these seals' diets, and so to gain information on their foraging regions in

181 conjunction with their trophic dynamics. Comparison of amino acid isotope data across these

182 three Antarctic seals will also further our understanding of present Antarctic food web structures,

- 183 which will provide valuable ecosystem baselines in light of ongoing climate change (Atkinson et184 al. 2004, Ducklow et al. 2007, Ducklow et al. 2012, Montes-Hugo et al. 2009).
- 185
- 186

MATERIALS AND METHODS

187 Sample collection

188 Tissue samples from Ross (n = 15), Weddell (n = 38), and crabeater seals (n = 41) were 189 collected along western Antarctica from the West Antarctic Peninsula (WAP) to the Ross Sea 190 during multiple field seasons in the austral summers of 2008/09 and 2010/11 aboard the RV 191 Oden. These animal captures were conducted in accordance with the regulations of the Swedish 192 Polar Research Secretariat (Registration No. 2010-112). All other samples were obtained from 193 animal captures conducted under National Marine Fisheries Service permit No. 87-1851-00. In 194 most cases, body mass, age class (iuvenile, subadult, and adult), gender, and location were 195 recorded for each sampled seal (Table S1). Additionally, the Institutional Animal Care and Use 196 Committee (IACUC) at the University of Santa Cruz (UC Santa Cruz) approved all protocols for 197 these samples.

198 Whole blood samples were obtained from most seals, and in some cases, clot (blood with 199 serum removed), red blood cells (RBCs, whole blood exposed to an anticoagulant, heparin, 200 before having plasma removed), and hair samples were also collected. The sampling protocols 201 are described in Aubail et al. (2011) and Goetz et al. (2017). Whiskers were taken from crabeater 202 seals during multiple cruises on the RV Lawrence M. Gould along the WAP, during fall 2001 (n = 7), winter 2001 (n = 7), fall 2002 (n = 15), winter 2002 (n = 14), and fall 2007 (n = 9). Plasma 203 was also obtained from a few of the fall 2007 individuals (G105, G110, and G112) (Hückstädt et 204 205 al. 2012a). In addition, serum or plasma was obtained from two Weddell seals during the fall

206 2007 sampling in this region, and whiskers were taken from two WAP Weddell seals in the 207 austral summer of 2009/10. Whisker samples were also collected from Weddell seals during the 208 summer 2009/10 (n=11), summer 2010/11 (n=10), summer 2011/12 (n=18) (Goetz et al. 2017). 209 Hückstädt et al. (2012a) describe the procedure for sampling the whiskers, and Goetz et al. 210 (2017) describe the protocol used for collecting seal blood. 211 Several blood samples were obtained from Weddell seals in the McMurdo Sound region, 212 Ross Sea, Antarctica over multiple field seasons. Twelve whole blood samples were taken from 213 juvenile Weddell seals near Inexpressible Island (74.9 °S, 163.7 °E) during the austral summer of 214 2010/11. Whole blood samples were taken from Weddell seals in the austral summer of 2010/11215 (n=5) and austral spring of 2012 (n=5). RBCs were sampled in the austral summer of 2009/10 216 (n=5), austral summer of 2011/12 (n=5), and austral spring of 2012 (n=5). Whole blood, plasma, 217 and serum were obtained from five Weddell seals sampled in the austral spring of 2015, and 218 whole blood from an additional seven Weddell seals was also acquired during this time. Goetz et 219 al. (2017) describe the sampling protocol for these Weddell seals. 220 Lastly, a few samples were obtained from crabeater seals in McMurdo Sound. Hair 221 samples were taken from three recently deceased juvenile crabeater seals that were found on the 222 seasonal pack ice around Cape Royds in the austral summer of 2009/10. Whole blood was 223 sampled, using the protocol of Goetz et al. (2017), from a male adult crabeater seal found in 224 Erebus Bay during the austral summer of 2010/11. 225

226 Sample preparation

After sample collection, all samples were kept frozen at -20 °C. Blood samples were freeze-dried with a Labconco Freeze Dry System (Lyph Lock 4.5) and homogenized manually

229	prior to isotope analysis. Lipid extraction was not performed on the blood samples, as blood has
230	a relatively low lipid content. A test set of blood samples with and without lipid extraction
231	revealed no significant effect of lipid extraction on blood δ^{13} C values (Table S2), though lipid
232	extraction did have an undesired impact on δ^{15} N values (Table S2).
233	Hair and whisker samples are known to have high enough lipid contents to affect $\delta^{13}C$
234	values so these samples were lipid extracted a la Hückstädt et al. (2012a). These samples were
235	washed with Milli-Q water (Thermo Fisher Scientific, Inc.) and then rinsed three times in an
236	ultrasonic bath with petroleum ether for 15 minutes.
237	
238	Bulk stable isotope analysis
239	For all blood and hair samples, $\sim 1 \text{ mg}$ was weighed into tin cups (Costech, 3x5 mm) for
240	bulk stable carbon and nitrogen isotope analysis. For hair, the follicle was removed since prior
241	work has shown it to have a different biochemical and isotopic composition than the rest of the
242	hair (Hückstädt et al. 2012b). This analysis was performed at the Stable Isotope Lab (SIL) of
243	University of California - Santa Cruz (UCSC) on a Carlo Erba EA 1108 elemental analyzer
244	coupled to a Thermo-Finnigan Delta ^{Plus} XP isotope ratio mass spectrometer. The δ^{13} C values
245	were referenced to the V-PDB standard, and $\delta^{15}N$ values were referenced to AIR. PUGel and
246	Acetanilide standards were analyzed in each instrument session in order to correct for variations
247	in mass across samples and instrument drift. Across 10 analytical sessions, the standard
248	deviations were 0.1 ‰ (n = 139) for δ^{13} C, 0.1 ‰ (n = 139) for δ^{15} N, and 0.1 (n = 139) for C/N
249	(atomic) for PUGel and 0.2 ‰ (n = 38) for δ^{13} C, 0.2‰ (n = 38) for δ^{15} N, and 0.4 (n = 38) for
250	C/N (atomic) for Acetanilide.
251	

252

Compound-specific isotope analysis

CSI-AA was performed at UCSC via gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). All samples were prepared for GC-C-IRMS analysis using the methods described in McCarthy et al. (2007) and McCarthy et al. (2013). In brief, samples were hydrolyzed (6 N HCl for 20 hr at 110 °C) and converted to trifluoro-acetylated isopropyl amino acid derivatives. Samples were stored at -20 °C in a 1:3 TFAA:DCM (dichloromethene) solution until analysis. Immediately before the analysis, the TFAA/DCM mixture was evaporated under N₂ and samples were diluted in ethyl acetate.

Amino acid δ^{15} N values were measured on a Thermo Trace GC coupled to a Thermo-260 Finnigan Delta^{Plus} XP isotope-ratio-monitoring mass spectrometer (oxidation furnace at 980 °C 261 262 and reduction furnace at 650 °C) using an SGE Analytical Science BPX5 column (60 m by 0.32 263 mm with a 1 μ m film thickness). The injector temperature was 250 °C with a split He flow of 2 264 mL/min. The GC temperature program was: initial temp = 70 °C hold for 1 min; ramp 1 = 10 °C 265 /min to 185 °C, hold for 2 min; ramp 2 = 2 °C/min to 200 °C, hold for 10 min; ramp 3 = 30°C/min to 300 °C, hold for 6 min. Directly measured amino acid δ^{15} N values were corrected 266 based on bracketed external standards of amino acids with known isotopic composition, as 267 described in McCarthy et al. (2013). The δ^{15} N values of 11 amino acids were quantified: alanine 268 269 (Ala), glycine (Gly), threonine (Thr), serine (Ser), valine (Val), leucine (Leu), Pro, aspartic acid 270 + asparagine (Asp), Glu, Phe, and lysine (Lys).

271

272 Data analysis

273 Most samples were whole blood. Since bulk isotope values can vary across different 274 tissues, species-specific corrections were applied to account for isotopic offsets between different

types of samples (see methods in *Supplementary Material* and resulting correction factors in Tables S3-S6). These corrections were applied to all bulk isotope data from tissues other than whole blood that had significant isotopic offsets from whole blood. An isotopic offset > 0.2 ‰ was considered significant, since the instrument error is ≤ 0.2 ‰.

279 All data analyses were performed in R statistical software (R Core Team, 2014). Tests of 280 normality and equal variance were conducted to assure test assumptions were met. In a few 281 cases, an assumption was violated and a data transformation was applied, as noted in *Results*. 282 Bulk isotope values of the three different seal species were compared with a one-way analysis of 283 variance (ANOVA) and post-hoc Bonferroni pairwise comparisons. Data were Box-Cox 284 transformed (Box and Cox, 1964). A four-way ANOVA with post-hoc Bonferroni pairwise 285 comparisons was used to test for significant effects of gender, sampling period, age class, and region (WAP, Amundsen Sea, and Ross Sea) on the bulk isotopic values of Ross, Weddell, and 286 287 crabeater seals. Both Weddell and crabeater seal data were Box-Cox transformed. Linear regression analyses were used to test for significant relationships between bulk δ^{13} C and δ^{15} N 288 289 values and body mass for each species.

290 A one-way ANOVA with post-hoc Bonferroni pairwise comparisons was used to test for significant differences in the δ^{15} N values of each amino acid among the three seal species. This 291 same procedure was conducted to compare the δ^{15} N values for each category of amino acid (i.e., 292 293 source or trophic) among the different seal species. For both Weddell and crabeater seals, a twotailed student's *t*-test was used to compare the δ^{15} N values of Pro, Glu and Phe for the WAP to 294 295 those of a combined Amundsen and Ross Sea region ("Amundsen/Ross Sea" in the subsequent text). Amino acid δ^{15} N values for seals from the Amundsen/Ross Seas were combined by species 296 (crabeater or Weddell) since both species had bulk δ^{15} N values that were similar between these 297

298 two regions. This analysis was not done for Ross seals since this species was almost exclusively sampled in the Amundsen Sea. A two-tailed student's *t*-test was used to compare the $\delta^{15}N_{Phe}$ 299 300 values of Weddell seals to those of crabeater seals for the WAP, and a one-way ANOVA with post-hoc Bonferroni pairwise comparisons was conducted to assess variation between the $\delta^{15}N_{Phe}$ 301 302 values of Ross, Weddell, and crabeater seals from the Amundsen/Ross Sea region. 303 CSI-AA based trophic positions (TP_{CSI-AA}) were calculated using a modified version of 304 the equation originally proposed by Chikaraishi et al. (2009). Here, we substituted Pro for Glu as 305 the trophic amino acid, as suggested by the comparative synthesis of TP_{CSI-AA} methods in

306 McMahon and McCarthy (2016), because Pro trophic discrimination appears to be less variable

across variations in diet. McMahon and McCarthy (2016) suggest that this new equation will

308 likely produce more ecologically realistic TP estimates for marine mammals. TP_{CSI-AA} was,

309 therefore, calculated as follows:

307

$$TP_{CSI-AA} = 1 + [(\delta^{15}N_{Pro} - \delta^{15}N_{Phe} - \beta_{Pro/Phe})/TDF_{Pro}]$$

where $\delta^{15}N_{Pro}$ is the seal Pro $\delta^{15}N$ value, $\beta_{Pro/Phe}$ is the isotopic difference between Pro and Phe in marine phytoplankton (3.1 ‰; Chikaraishi et al. 2009), and TDF_{Pro} is the trophic discrimination between diet and consumer for Pro minus the same for Phe ($\Delta^{15}N_{pro} - \Delta^{15}N_{Phe} = 4.5$ ‰;

313 McMahon and McCarthy 2016). Differences in TP_{CSI-AA} among the three seal species were

determined with a one-way ANOVA with post-hoc Bonferroni pairwise comparisons using data

for individuals only from the Ross and Amundsen Seas to reduce the effect of location on our

316 findings. Differences in TP_{CSI-AA} between the WAP versus Amundsen and Ross Seas were

317 determined with a two-tailed students *t*-test for Weddell and crabeater seals. For all statistical

analyses, a result was considered significant if p < 0.05.

319	Lastly, maps were produced in Ocean Data View (ODV) version (4.7.4) (Schlitzer 2015)
320	to show spatial patterns in bulk $\delta^{13}C$ and $\delta^{15}N$ values, as well as $\delta^{15}N_{Phe}$ and $\delta^{15}N_{Pro}$.
321	
322	RESULTS
323	
324	Bulk δ^{13} C and δ^{15} N values of Ross, Weddell, and crabeater seals
325	Bulk δ^{13} C and δ^{15} N values varied significantly among the three species (Fig. 1, Table S7). Ross
326	seals had significantly higher δ^{13} C values (-23.8 ± 0.3 ‰ for the mean ± standard deviation, <i>n</i> =
327	15) than both Weddell seals (-25.0 \pm 0.6 ‰, <i>n</i> = 125) and crabeater seals (-25.0 \pm 1.4 ‰, <i>n</i> = 97)
328	($p < 0.001$ for post-hoc Bonferroni pairwise comparisons). All seals had δ^{15} N values
329	significantly different from each other: crabeater seal $(7.2 \pm 0.8 \text{\%}, n = 97) < \text{Ross seal } (9.1 \pm 0.4 \text{\%})$
330	‰, $n = 15$) < Weddell seal (12.3 ± 0.6 ‰, $n = 125$) ($p < 0.001$ for all Bonferroni post-hoc
331	comparisons). We found no consistent relationships between bulk stable isotope values of seals
332	and measures of sampling period, gender, age class, or body mass (see the Supplementary
333	Material).
334	
335	Spatial patterns of bulk δ^{13} C and δ^{15} N values for Antarctic seals
336	Both Weddell and crabeater seals showed significant spatial variation in their $\delta^{13}C$
337	values. Weddell seal δ^{13} C values were significantly greater in the Ross Sea (-25.1 ± 0.5 ‰, <i>n</i> =
338	100) and the Amundsen Sea (-24.7 ± 0.4 ‰, $n = 21$) than in the WAP (-22.9 ± 0.9 ‰, $n = 4$) ($p \le 100$

- 339 0.002 in all cases from Bonferroni post-hoc comparisons; Fig. 2a, Table S7). Likewise, the δ^{13} C
- 340 values of crabeater seals along the WAP were significantly higher $(-24.0 \pm 1.1 \%, n = 52)$ than

341 those in the Amundsen Sea (-26.1 \pm 0.4 ‰, n = 35) and Ross Sea (-26.1 \pm 0.5 ‰, n = 10) ($p < 10^{-10}$ 342 0.001 in both cases for Bonferroni post-hoc comparisons; Fig. 3a, Table S7). Unlike their bulk δ^{13} C values. Weddell seals showed no significant differences in bulk 343 344 δ^{15} N values across the three regions (Fig. 2b, Table S7). In contrast, crabeater seals from the WAP had significantly lower δ^{15} N values (6.8 ± 0.6 ‰, n = 52) than those from the Amundsen 345 Sea $(7.6 \pm 0.6 \%, n = 35)$ and Ross Sea $(8.0 \pm 1.4 \%, n = 10)$ (p < 0.001 in both cases from 346 Bonferroni post-hoc comparisons, Fig. 3b. Table S7). Note, spatial variation in bulk δ^{13} C and 347 348 δ^{15} N values of Ross seals across West Antarctica could not be examined because all but one of 349 the individuals were from the Amundsen Sea (Fig. S1).

350

351 Compound-specific δ^{15} N values of Ross, Weddell, and crabeater seals

352 Nitrogen isotope values were significantly different among at least two of the three seal 353 species for all amino acids, except Gly (Figs. 4 and S2, Tables S8 and S9). For most trophic amino acids (Glu, Ala, Ile, Leu, Pro, and Val), δ^{15} N values differed significantly among all three 354 species (Table S9), with Weddell > Ross > crabeater. For example, Pro δ^{15} N values of Weddell 355 356 seals $(20.0 \pm 1.4 \%, n = 6)$ are significantly greater than those of Ross $(17.2 \pm 0.5 \%, n = 6)$ and 357 crabeater (15.6 \pm 0.6 ‰, n = 6) seals (p < 0.001 in both cases from Bonferroni post-hoc comparisons). Pro δ^{15} N values of Ross seals (17.2 ± 0.5 ‰, n = 6) are significantly greater than 358 359 those of crabeater seals $(15.6 \pm 0.6 \%, n = 6)$ with a *p*-value of 0.03 from Bonferroni post-hoc comparisons. For the trophic amino acid, Asp. crabeater seals had significantly lower δ^{15} N 360 361 values $(10.1 \pm 0.6 \%, n = 6)$ than Weddell $(16.2 \pm 2.2 \%, n = 6)$ and Ross seals $(14.1 \pm 1.0 \%, n = 6)$ = 6) (p < 0.001 in both cases from Bonferroni post-hoc comparisons). Additionally, δ^{15} N values 362 among all trophic amino acids were significantly different among all three seal species (p < p363

364 0.001 in all cases from Bonferroni post-hoc comparisons) with these values decreasing in the 365 manner: Weddell seals $(21.1 \pm 2.7 \%, n = 42) > \text{Ross seals} (17.7 \pm 1.9 \%, n = 41) > \text{crabeater}$ 366 seals $(13.5 \pm 1.9 \%, n = 42)$.

 δ^{15} N values were significantly different between at least two seal species for both 367 368 commonly defined source amino acids (Phe and Lys). For Lys, Ross seals had significantly lower δ^{15} N values (2.8 ± 0.7 ‰, n = 6) than Weddell (5.2 ± 1.5 ‰, n = 6) and crabeater seals (5.0 369 370 ± 0.4 ‰, n = 6) (p-values of 0.005 and 0.009, correspondingly, from Bonferroni post-hoc comparisons). Likewise, Ross seals had significantly lower δ^{15} N_{Phe} values (2.7 ± 0.7 ‰, n = 6) 371 372 than Weddell $(5.7 \pm 0.5 \%, n = 6)$ and crabeater seals $(5.2 \pm 1.0 \%, n = 6)$ (p < 0.001 in both cases from Bonferroni post-hoc comparisons). Combined, the δ^{15} N values of these source amino 373 374 acids (Phe and Lys) for Ross seals $(2.7 \pm 0.7 \%, n = 11)$ are less than those of crabeater $(5.1 \pm 1.5 \%)$ 0.7 ‰, n = 12) and Weddell seals (5.5 ± 1.1 ‰, n = 12) with p < 0.001 in all cases from from 375 376 Bonferroni post-hoc comparisons. 377 While Gly and Ser are challenging to accurately categorize in terms of conventional trophic and source groupings (McMahon and McCarthy 2016), we do note that Ser δ^{15} N values 378 379 of Weddell seals $(8.7 \pm 1.4 \%, n = 6)$ were significantly higher than those of both crabeater (4.2) ± 1.9 ‰, n = 6) and Ross seals (5.3 ± 0.6 ‰, n = 6) (*p*-values of < 0.001 and 0.002, respectively, 380 381 from Bonferroni post-hoc comparisons). No significant differences among the three seal species occur for Gly δ^{15} N values. Ross, Weddell, and crabeater seals have Gly δ^{15} N values of 4.9 ± 1.1 382 383 (n = 6), $5.4 \pm 2.9 \ (n = 6)$, and $3.8 \pm 2.8 \ (n = 6)$, correspondingly. 384

385 Spatial patterns of Phe, Pro, and Glu δ^{15} N values for Antarctic seals

386 For Weddell seals, Phe, Pro, and Glu values did not differ significantly between the 387 Amundsen/Ross Sea and the WAP (Fig. S4). In contrast, crabeater seals had significantly lower δ^{15} N_{Phe} values in the WAP (4.3 ± 0.4 ‰, n = 3) relative to those from the Amundsen/Ross Sea 388 389 region $(6.0 \pm 0.7 \text{ }\%, n = 3)$ (p = 0.04, two-tailed student's t-test) (Figs. 5 and 6, Table S8). Crabeater $\delta^{15}N_{Pro}$ and $\delta^{15}N_{Gh}$ were not significantly different between the WAP (15.9 ± 0.5 %) 390 391 and 15.0 ± 0.2 %, respectively, n=3 for both) and the Amundsen/Ross Sea region (15.4 ± 0.6 %) 392 and 14.8 ± 0.4 ‰, correspondingly, n = 3 for both, Table S8). As with bulk isotope values, spatial variation in δ^{15} N values of source amino acids for Ross seals could not be examined since 393 394 all but one individual were from the Amundsen Sea (Fig. S3). Both crabeater and Weddell seals had similar $\delta^{15}N_{Phe}$ for the Amundsen/Ross Sea region, 395

 $6.0 \pm 0.7 \% (n = 3)$ and $5.7 \pm 0.7\% (n = 3)$, respectively, that were significantly higher than the $\delta^{15}N_{Phe}$ for Ross seals ($2.7 \pm 0.7 \%$, n = 6) (*p*-values < 0.001 in all cases from Bonferroni posthoc comparisons). However, crabeater seals had significantly lower $\delta^{15}N_{Phe}$ ($4.3 \pm 0.4 \%$, n = 3) than Weddell seals ($5.7 \pm 0.4 \%$, n = 3) for the WAP (p = 0.01 from a two-tailed student's *t*-test). 400

401 Trophic positions of Ross, Weddell, and crabeater seals

Among species, both Ross seals $(3.5 \pm 0.2, n = 6)$ and Weddell seals $(3.7 \pm 0.1, n = 3)$ were over a full trophic level higher than crabeater seals $(2.4 \pm 0.2, n = 3)$ (p < 0.001 from Bonferroni post-hoc comparisons in both cases, restricted to Amudsen/Ross Seas where all species were collected) (Fig. 7). Within species, Weddell seals had similar TP_{CSI-AA} values for the WAP ($3.3 \pm 0.4, n = 3$) and Amundsen/Ross Sea region ($3.7 \pm 0.1, n = 3$). However, crabeater seals had significantly higher TP_{CSI-AA} values in the WAP ($2.9 \pm 0.1, n = 3$) than the Amundsen/Ross Sea region ($2.4 \pm 0.2, n = 3$) (p = 0.03 from a two-tailed student's *t*-test). For

409	crabeater seals, note that one subadult was included along with five adult seals in the CSI-AA
410	sample set. Although some significant variation in bulk δ^{15} N values was observed across
411	different age classes for this species (see Supplementary Material), the TP _{CSI-AA} value of the
412	subadult from the Amundsen/Ross sea region (2.3) was indistinguishable from those of the adults
413	from this region (2.4 \pm 0.2, $n = 2$). Finally, we note that there were some significant differences
414	in the bulk δ^{15} N values of Weddell seal age classes (discussed in the Supplementary Material),
415	but only samples from adults are used in our CSI-AA subset.
416	
417	DISCUSSION
418	
419	Ross, Weddell, and crabeater seal bulk isotope values in our study were similar to those
420	reported in earlier work on these species for our study region (Burns et al. 1998, Zhao et al.
421	2004, Aubail et al. 2011, Goetz et al. 2017, Botta et al. 2018), after correction for isotopic offsets
422	for different tissue types (Table S10). These new bulk isotope results are especially valuable for
423	Ross seals since very little isotopic measurements exist to date. Our bulk $\delta^{15}N$ values, like those
424	of prior studies (Rau et al. 1992, Burns et al. 1998, Zhao et al. 2004, Aubail et al. 2011, Cipro et
425	al. 2012, and Hückstädt et al. 2012a), all point to Ross seals being at an intermediate trophic
426	position between those of Weddell and crabeater seals. In the following discussion we explore
427	the trophic positions, diets, and foraging habitats of these three seal species using novel CSI-AA
428	data to help interpret our bulk isotope data.
429	

430 Spatial patterns in seal bulk and amino acid isotope values

Both Weddell and crabeater seals showed spatial patterns in their bulk δ^{13} C values. 431 Weddell and crabeater seals had significantly higher δ^{13} C values in the WAP than the Amundsen 432 433 and Ross Seas. As this carbon isotope gradient occurs in Weddell and crabeater seals at different trophic levels, it is likely driven by changes in baseline δ^{13} C values. Prior research has shown 434 that δ^{13} C values decrease with increasing latitude in the West Antarctic as a result of increasing 435 CO₂ solubility with decreasing sea surface temperatures (Cherel and Hobson 2007, Quillfeldt et 436 al. 2010. Brault et al. 2018). Thus, the spatial variation in the bulk δ^{13} C values of these two 437 438 species likely predominantly reflects the sea surface temperature gradient in the West Antarctic, 439 with colder temperatures in the higher latitude Amundsen and Ross Sea compared to the warmer, 440 lower latitude WAP. The difference in sea surface temperatures of the WAP and Ross Sea 441 (Ducklow et al. 2007, Ducklow et al. 2012, Smith et al. 2014) has been shown to contribute to an ~ 2 ‰ decrease in the δ^{13} C_{baseline} between these regions (Brault et al. 2018), similar to the offset 442 between the WAP and Ross Sea bulk δ^{13} C values that we observe for Weddell and crabeater 443 444 seals (2.0 ‰ and 2.1‰, respectively). Weddell and crabeater seals showed different spatial patterns in their bulk δ^{15} N values 445 across West Antarctica. Weddell seals showed no spatial patterns in bulk $\delta^{15}N$ values across the 446 447 study region, Crabeater seals had significantly lower bulk δ^{15} N values in the WAP than the Amundsen and Ross Seas. A spatial gradient in δ^{15} N_{haseline} in the Southern Ocean has been 448

449 detected by previous research, and likely reflects changes in nutrient utilization and primary

450 productivity (DiFiore et al. 2006, DiFiore et al. 2009, Brault et al. 2018). A lower $\delta^{15}N_{\text{baseline}}$ (~ 2

451 %) in the WAP compared to the Amundsen and Ross Seas was found in a study of zooplankton

452 (Brault et al. 2018); this is similar to the difference observed here between WAP and

453 Amundsen/Ross Sea crabeater seal $\delta^{15}N_{Phe}$ values (1.7 ‰). This difference in $\delta^{15}N_{baseline}$ values

454 appears to reflect the relative proportion of oceanic versus coastal production across the West Antarctic (DiFiore et al. 2006, DiFiore et al. 2009, Brault et al. 2018). Baseline δ^{15} N values 455 456 likely increase from oceanic to coastal areas due to increasing productivity and nutrient 457 drawdown towards the continent in the summer (DiFiore et al. 2006, DiFiore et al. 2009, Brault 458 et al. 2018). The WAP, with its narrow shelf, likely has a greater influence from oceanic waters 459 beyond the continental margin, whereas the Amundsen Sea and Ross Sea have wider, more productive shelf systems consistent with higher δ^{15} N_{baseline} values (Arrigo et al. 1998, 2008, 460 461 DiFiore et al. 2006, Smith & Comiso 2008, DiFiore et al. 2009, Alderkamp et al. 2012, Brault et 462 al. 2018).

463 Continental shelves in Antarctica are especially productive areas compared to offshore 464 waters since both light and iron become available for phytoplankton blooms at times of coastal 465 polynya formation and increased iron inputs from various sources (e.g., melting glaciers) 466 (Gordon et al. 2000, Alderkamp et al. 2012, Arrigo et al. 2015). Although annual production in 467 the Amundsen and Ross Seas exceeds that of the WAP (Arrigo et al. 1998, 2008, Smith and 468 Comiso 2008, Alderkamp et al. 2012), localized regions in the WAP may experience high rates 469 of primary productivity comparable to those within the Amundsen and Ross Seas. For example, 470 Schmidt et al. (2003) found that Marguerite Bay in the WAP can be a "hot spot" of productivity, as revealed by high phytoplankton and zooplankton δ^{15} N values. To date, examinations of 471 δ^{15} N_{baseline} variation in West Antarctica have suggested that it increases from oceanic to coastal 472 473 waters, tracking a gradient in productivity and nutrient drawdown (Brault et al. 2018).

474 While it is likely that the observed spatial differences in Weddell and crabeater seal bulk 475 δ^{15} N values reflect these δ^{15} N_{baseline} gradients, spatial patterns in seal bulk δ^{15} N values could be 476 related to shifts in diet, δ^{15} N_{baseline} values, or both. The δ^{15} N_{Phe} values of Ross, Weddell, and

crabeater seals, on the other hand, reflect $\delta^{15}N_{\text{baseline}}$, driven by spatial gradients in nutrient 477 utilization and primary productivity, without the confounding factor of trophic fractionation. As 478 such, the spatial changes in $\delta^{15}N_{\text{baseline}}$ in West Antarctica are useful for deducing the relative 479 480 foraging habitats of Weddell and crabeater seals. Weddell seals from the WAP to the Ross Sea consistently have the highest δ^{15} N_{Phe} values (5.7 ± 0.4 ‰ for the WAP and 5.7 ± 0.7 ‰ for the 481 Amundsen/Ross Sea region, n = 3 in both cases) within the overall range of δ^{15} N_{Phe} for all 482 483 Antarctic seal (1.90 % to 6.81 %). This suggests that Weddell seals throughout West Antarctica 484 follow a similar foraging behavior in which they predominantly target the most productive environments within an area (i.e., highest $\delta^{15}N_{\text{baseline}}$; Brault et al. 2018). These are likely to be 485 coastal regions, given our understanding of the West Antarctic δ^{15} N_{baseline} gradients. Satellite 486 487 tracking data of different seal species in this region support this hypothesis. Costa et al. (2010) 488 used satellite data to show that in the WAP, Weddell seals (unlike crabeater seals) moved 489 minimally, foraging almost exclusively in likely highly productive coastal fjords (Schmidt et al. 490 2003, DiFiore et al. 2006, 2009). Goetz (2015), likewise, found that Weddell seal movements do 491 not extend beyond the Ross Sea continental shelf.

In contrast to Weddell seals, crabeater $\delta^{15}N_{Phe}$ values vary significantly across West 492 493 Antarctica, with higher values in the Amundsen and Ross Seas versus the WAP. These data 494 indicate that crabeater seals have greater foraging habitat flexibility than Weddell seals, and thus 495 make use of a wider range of productivity regimes. Weddell and crabeater seals also have significantly different δ^{15} N_{baseline} for the WAP, which is not observed for the Amundsen/Ross Sea 496 497 region, pointing to environmental heterogeneity in the WAP. Our current knowledge of crabeater 498 seals indicates that this seal heavily consumes E. superba (Laws 1977, Rau et al. 1992, Burns et 499 al. 2004, Zhao et al. 2004, Burns et al. 2008, Aubail et al. 2011, Hückstädt et al. 2012a), a krill

500 species with a distribution linked to that of sea ice. As a consequence, crabeater seals move on 501 and off the continental shelf, depending on the krill life cycle stage and seasonal ice cover (Nicol 502 2006). We hypothesize that crabeater seals move across the heterogeneous environments of the WAP, at times of the year incorporating the lower off-shelf $\delta^{15}N_{\text{baseline}}$ values, in contrast with 503 504 Weddell seals. Such a movement pattern by crabeater seals is supported by the tracking results of Costa et al. (2010). Since crabeater seals in the Amundsen/Ross Sea region have $\delta^{15}N_{Phe}$ values 505 506 more similar to those of Weddell seals from this area, the same interpretation would suggest that 507 crabeater seals in this region stay within the wider and more productive continental shelf areas of 508 the Amundsen and Ross Seas. Overall, our results indicate that Weddell seals have a strong 509 preference for productive coastal sites, whereas crabeater seals use more diverse habitats in West 510 Antarctica, but that their foraging patterns vary by region.

Ross seals sampled in the Amundsen/Ross Seas had significantly lower δ^{15} N_{Phe} values 511 512 than both Weddell and crabeater seals from this region (Fig. 4). This result suggests that Ross seals are foraging in a different region from the other two species. These low $\delta^{15}N_{\text{haseline}}$ values 513 coupled with our current understanding of the West Antarctic $\delta^{15}N_{\text{baseline}}$ gradient (Brault et al. 514 515 2018) strongly suggest that Ross seals are likely feeding much further offshore than Weddell and 516 crabeater seals, largely in the oceanic region of the Southern Ocean that experiences low nutrient 517 drawdown and low productivity relative to coastal areas (DiFiore et al. 2006, DiFiore et al. 2009, 518 Jaeger et al. 2010, Somes et al. 2010).

Prior research supports our hypothesis that Ross seals are largely oceanic feeders. For
example, Blix and Nordøy (2007) examined the foraging behavior of Ross seals via satellitelinked dive recorders. The tags tracked the movements of 10 adult Ross seals captured off Queen
Maud Land (East Antarctica) just after their molt in February 2001. The animals migrated 2,000

523 km north to pelagic waters south of the Antarctic Polar Front. These Ross seals staved in that 524 area until October when they traveled south into the pack ice (Blix and Nordøy 2007). Similarly, 525 Arcalis-Planas et al. (2015) showed that Ross seals minimally use sea ice, hauling out for only 526 short periods each year to molt (December to January) and breed (late October to mid-527 November). They report that Ross seals are moving from 587 to 1,282 km off the ice edge during much of the year (Arcalis-Planas et al. 2015). The low δ^{15} N_{haseline} value measured in our study 528 529 represents independent evidence that Ross seals are indeed are spending the majority of each 530 year foraging in less productive, oceanic waters, separate from the more coastal food webs of the 531 crabeater and Weddell seals.

532

533 Reevaluating trophic dynamics of Antarctic Seals

Differences in regional foraging habitat utilization among seals, indicated by $\delta^{15}N_{phe}$ 534 535 between Ross seals versus crabeater and Weddell seals ($\sim 3 \%$), suggest the need for a 536 reevaluation of the TP and associated food web ecology for Ross seals. Our compound-specific 537 approach allowed us to calculate trophic positions of these Antarctic seals that were internally indexed to δ^{15} N_{baseline}. We found that Ross seals had TP_{CSI-AA} values similar to those of Weddell 538 539 seals, both of which were significantly higher than crabeater seals. This result differed from previous conclusions based on bulk δ^{15} N values, which suggested that Ross seals were at an 540 541 intermediate trophic position between crabeater and Weddell seals (Rau et al. 1992, Zhao et al. 542 2004, Aubail et al. 2011). Our results suggest that, like Weddell seals, Ross seals are 543 predominantly feeding on high trophic level prey, such as mid-to-deep water fish and squid, and 544 that lower trophic level prey (e.g., *E. superba*) are not a major part of their diets. This conclusion 545 is supported by dive records, which indicate that Ross seals forage at depths associated with

capturing mesopelagic squid and fish (Bengtson and Stewart 1997, Blix and Nordøy 2007), and
corroborate limited stomach content analyses that have reported Antarctic silverfish and glacial
squid comprising their diets in varying proportions (Skinner and Klages, 1994).

549 Our compound-specific isotope approach to trophic dynamics also revealed significant 550 spatial variation in the trophic dynamics of crabeater seals across West Antarctica. The TP_{CSI-AA} 551 value of crabeater seals decreases by approximately 0.5 from the WAP to the Amundsen/Ross 552 Sea region, which is substantial for a low trophic level consumer like the crabeater seal that is 553 thought to specialize on krill. Variations of this range have been shown to be significant in many 554 past studies (e.g., McCarthy et al. 2007; Batista et al. 2014), with recent ecological work 555 showing that TP_{CSI-AA} variation as small as 0.2 to 0.3 indicates real ecological change (Ostrom et 556 al. 2017). This pattern is not likely driven by differences in age class across regions as all but one 557 crabeater seal from both regions were adults. The WAP has been experiencing increased krill 558 fishing pressure, a resurgence in baleen whales (competitors for krill), and dramatic reductions in 559 sea ice extent as a function of rapid regional warming, all of which have negative effects on E. 560 superba abundance (Ducklow et al. 2007, Trivelpiece et al. 2011, Ducklow et al. 2012, Nicol et 561 al. 2012). Perhaps these environmental changes have decreased the availability of krill for 562 crabeater seals in this area, causing crabeater seals to supplement their diet with fish in the WAP 563 relative to the Amundsen/Ross Sea region.

Alternatively, the regional differences in crabeater seal TP_{CSI-AA} values could be the result of bottom-up effects. Prior research has shown omnivorous behaviors by *E. superba* in the WAP and Drake Passage regions, possibly contributing to a higher euphausiid TP in this region than other areas of the Antarctic (Schmidt et al. 2006). However, euphausiid omnivory in the Ross Sea has also been suggested (Hopkins 1987, Pinkerton et al. 2010), and it is possible that

569	omnivory by this taxon varies in time and space (Schmidt et al. 2006). Given these uncertainties,
570	it is not possible to definitively assess the relative roles of shifts in diet versus krill omnivory to
571	our observed spatial gradient of crabeater seal TP _{CSI-AA} .
572	
573	CONCLUSIONS
574	
575	Our work using bulk and amino acid isotope analyses revealed significant variability in
576	the foraging habitats and trophic dynamics of three important Antarctic seal species in the West
577	Antarctic. Ross seals are foraging in a low productivity, oceanic food web far offshore from that
578	of crabeater and Weddell seals. Crabeater and Weddell seals are foraging within similar food
579	webs closer to shore, but isotopic data suggest that crabeater seals are likely following sea ice to
580	capture E. superba, while Weddell seals target the most productive, near-shore areas within the
581	western Antarctic to take prey. In addition, our CSI-AA data revealed that Ross seals occupy a

582 higher trophic position than originally thought, equivalent to Weddell seals and greater than that

583 of crabeater seals. Additionally, since bulk isotope-based TP estimates are unable to account for

584 varying baseline δ^{15} N values, we hypothesize that the strong baseline changes across the

585 environments inhabited by these species are responsible for this underestimate of TP. This study

586 will begin to reshape our understanding of Ross seal foraging ecology while also highlighting the

587 challenges and potential solutions to accounting for variability in baseline and trophic dynamics

588 when interpreting consumer isotope data in studies of foraging ecology.

590	
591	ACKNOWLEDGEMENTS
592	
593	Dyke Andreasen, Colin Carney, Elizabeth Gier, Stephanie Christensen, Jonathan Nye,
594	and Aaron Rosenfield provided considerable assistance with method development and the
595	laboratory analyses entailed in this study. The crew of RV Oden was extremely accommodating
596	and helpful in completing our sampling protocols. The support staffs of McMurdo and Palmer
597	Stations, similarly, gave us considerable assistance in performing our sample collections. The
598	National Science Foundation (NSF) granted our funding for this study (NSF ANT-1142108).
599	Drs. Elizabeth Canuel, Rebecca Dickhut, and Andrew Wozniak helped with the importation of
600	samples (Permit No. 17178 from the National Marine Fisheries Service).
601	
602	REFERENCES
603	
604 605	Ainley DG, Siniff DB (2009) The importance of Antarctic toothfish as prey of Weddell seals in the Ross Sea. Antarct Sci 21:317-327
607 608 609 610	Alderkamp AC, Mills MM, van Dijken GL, Laan P, Thuróczy CE, Gerringa LJA, de Baar HJW, Payne CD, Visser RJW, Buma AGJ, Arrigo KR (2012) Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics and productivity. Deep-Sea Res Part II Top Stud Oceanogr 71-76:32-48
611 612 613 614	Altabet MA, Francois R (2001) Nitrogen isotope biogeochemistry of the Antarctic Polar Frontal Zone at 170 W. Deep Sea Res Part II 48:4247-4273
615 616 617 618	Arcalís-Planas A, Sveegaard S, Karlsson O, Harding KC, Wåhlin A, Harkonen T, Teilmann J (2015) Limited use of sea ice by the Ross seal (<i>Ommatophoca rossii</i>), in Amundsen Sea, Antarctica, using telemetry and remote sensing data. Polar Biol 38:445-461
619 620 621	Arim M, Naya DE (2003) Pinniped diets inferred from scats: analysis of biases in prey occurrence. Can J Zool 81:67-73

622 623	Arrigo KR, Weiss AM, Smith WO (1998) Physical forcing of phytoplankton dynamics in the southwestern Ross Sea. J Geophys Res Oceans 103:1007-1021
624 625	Arrigo KR, van Dijken GL (2003) Phytoplankton dynamics within 37 Antarctic coastal polynyas
626 627	systems. J Geophys Res 108:3271
628 629 630	Arrigo KR, van Dijken GL, Bushinsky S (2008) Primary production in the Southern Ocean, 1997–2006. J Geophys Res Oceans 113:C08004
631 632 633	Arrigo KR, van Dijken GL, Strong AL (2015) Environmental controls of marine productivity hot spots around Antarctica. J Geophys Res, C, Oceans, 120:5545-5565
634 635 636	Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the southern ocean. Nature 432: 100-103
637 638 639 640	Aubail A, Teilmann J, Dietz R, Rigét F, Harkonen T, Karlsson O, Rosing-Asvid A, Caurant F (2011) Investigation of mercury concentrations in fur of phocid seals using stable isotopes as tracers of trophic levels and geographic regions. Polar Biol 34:1411-1420
641 642 643 644	Batista FC, Ravelo AC, Crusius J, Casso MA, McCarthy MD (2014) Compound specific amino acid δ^{15} N in marine sediments: A new approach for studies of the marine nitrogen cycle. Geochim Cosmochim Ac 142:553-569
645 646 647	Bengtson JL, Stewart BS (1997) Diving patterns of a Ross seal (<i>Ommatophoca rossii</i>) near the eastern coast of the Antarctic Peninsula. Polar Biol 18:214-218
648 649 650 651	Bengtson JL, Laake JL, Boveng PL, Cameron MF, Hanson MB, Stewart BS (2011) Distribution, density, and abundance of pack-ice seals in the Amundsen and Ross Seas, Antarctica. Deep Sea Res Pt II 58:1261-1276
652 653 654 655	Blix AS, Nordøy ES (2007) Ross seal (<i>Ommatophoca rossii</i>) annual distribution, diving behaviour, breeding and moulting, off Queen Maud Land, Antarctica. Polar Biol 30:1449- 1458
656 657 658	Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411-440
659 660 661	Box GE, Cox DR (1964) An analysis of transformations. J R Stat Soc Series B Stat Methodol 26:211-252
662 663 664 665	Brault EK, Koch PL, McMahon KW, Broach KH, Rosenfield AP, Sauthoff W, Loeb VJ, Arrigo KR, Smith Jr WO (2018) Carbon and Nitrogen Zooplankton Isoscapes in West Antarctica Reflect Oceanographic Transitions. Mar Ecol Prog Ser 593:29-45

666 Burns JM, Trumble SJ, Castellini MA, Testa JW (1998) The diet of Weddell seals in McMurdo 667 Sound, Antarctica as determined from scat collections and stable isotope analysis. Polar Biol 668 19:272-282 669 670 Burns JM, Costa DP, Fedak MA, Hindell MA, Bradshaw CJ, Gales NJ, McDonald B, Trumble 671 SJ, Crocker DE (2004) Winter habitat use and foraging behavior of crabeater seals along the 672 Western Antarctic Peninsula. Deep Sea Res Pt II 51:2279-2303 673 674 Burns JM, Hindell MA, Bradshaw CJA, Costa DP (2008) Fine-scale habitat selection of 675 crabeater seals as determined by diving behavior. Deep Sea Res Pt II 55:500-514 676 677 Cherel Y, Hobson KA (2007) Geographical variation in carbon stable isotope signatures of 678 marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol 679 Prog Ser 329:281-287 680 681 Chikaraishi Y, Ogawa NO, Kashiyama Y, Takano Y, Suga H, Tomitani A, Miyashita H, 682 Kitazato H, Ohkouchi N (2009) Determination of aquatic food-web structure based on 683 compound-specific nitrogen isotopic composition of amino acids. Limnol Oceanogr: 684 Methods 7:740-750 685 686 Cipro CV, Bustamante P, Taniguchi S, Montone RC (2012) Persistent organic pollutants and 687 stable isotopes in pinnipeds from King George Island, Antarctica. Mar Pollut Bull 64:2650-688 2655 689 690 Costa DP, Hückstädt LA, Crocker DE, McDonald BI, Goebel ME, Fedak MA (2010) 691 Approaches to studying climatic change and its role on the habitat selection of Antarctic 692 pinnipeds. Integr Comp Biol 50: 1018-1030 693 694 de Baar HJ, Buma AG, Nolting RF, Cadée GC, Jacques G, Tréguer PJ (1990) On iron limitation 695 of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar Ecol 696 Prog Ser 65:105-122 697 698 Dellinger T, Trillmich F (1988) Estimating diet composition from scat analysis in otariid seals 699 (Otariidae): is it reliable? Can J Zool 66:1865-1870 700 701 DiFiore PJ, Sigman DM, Trull TW, Lourey MJ, Karsh K, Cane G, Ho R (2006) Nitrogen isotope 702 constraints on subantarctic biogeochemistry. J Geophys Res Oceans 111:C08016 703 704 DiFiore PJ, Sigman DM, Dunbar RB (2009) Upper ocean nitrogen fluxes in the Polar Antarctic 705 Zone: Constraints from the nitrogen and oxygen isotopes of nitrate. Geochem Geophys 706 Geosyst 10:Q11016 707 708 Ducklow, HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC (2007) Marine pelagic 709 ecosystems: The west WAP. Philos Trans R Soc B Biol Sci 362:67-94 710

711	Ducklow HW, Clarke A, Dickhut R, Doney SC, Geisz H, Huang K, Martinson DG, Meredith
712	MP, Moeller HV, Montes-Hugo M, Schofield O, Stammerjohn SE, Steinberg D, Fraser W
713	(2012) The marine system of the western WAP. In: Rogers AD, Johnston NM, Murphy EJ,
714	Clarke A (eds) Antarctic ecosystems: an extreme environment in a changing world,
715	Blackwell Publishing LTD, Hoboken, New Jersey, USA, p 121-159
716	
717	Germain LR, Koch PL, Harvey J, McCarthy MD (2013) Nitrogen isotope fractionation in amino
718	acids from harbor seals: implications for compound-specific trophic position calcuations.
719	Mar Ecol Prog Ser 482:265-277
720	6
721	Goetz KT. Burns JM. Hückstädt LA. Shero MR. Costa DP (2017) Temporal variation in isotopic
722	composition and diet of Weddell seals in the western Ross Sea. Deep Sea Res II 140:36-44
723	
724	Goetz KT (2015) Movement habitat and foraging behavior of Weddell Seals (Leptonychotes
725	weddellii) in the western Ross Sea Antarctic PhD dissertation University of California
726	Santa Cruz CA
727	
728	Gordon LL Codispoti LA Jennings IC Millero FL Morrison IM Sweeney C (2000) Seasonal
729	evolution of hydrographic properties in the Ross Sea Antarctica 1996–1997 Deen Sea Res
730	II 47.3095-3117
731	II 17.5075 5117
732	Graham BS, Koch PL, Newsome SD, McMahon KW, Aurioles D (2010) Using isoscapes to
733	trace the movements and foraging behavior of ton predators in oceanic ecosystems. In: West
734	IB Bowen GI Dawson TF Tu KP (eds) Isoscanes Springer Netherlands n 299-318
735	3D, Dowen G3, Dawson TE, Tu Ki (eds) isoscupes. Springer, redictionals, p 299 510
736	Honkins TL (1987) Midwater food web in McMurdo Sound Ross Sea Antarctica Mar Biol
737	96.93-106
738	<i>70.75</i> 100
739	Hückstädt I & Burns IM Koch PI McDonald BI Crocker DF Costa DP (2012a) Diet of a
740	specialist in a changing environment: the craheater seal along the western Antarctic
740	Peninsula Mar Ecol Prog Ser 455:287-301
742	1 emilisula. Wai Deor 1105 Ser 455.207 501
742	Hückstädt I & Koch PI McDonald BI Goebel ME Crocker DE Costa DP (2012b) Stable
744	isotone analyses reveal individual variability in the trophic ecology of a top marine predator
745	the southern elephant seal. Oecologia 169:395-406
745	the southern dephant sear. Occologia 107.575-400
740	Jaeger A. Connan M. Richard P. Cherel V (2010) Use of stable isotones to quantify seasonal
747	changes of trophic niche and levels of nonulation and individual specialization in seabirds
740	Mar Ecol Prog Ser 401:269-277
750	Wiai Ecol 110g Ber 401.209-277
751	Lake S. Burton H. van den Hoff I (2003) Regional temporal and fine scale spatial variation in
751	Woddall soal diet at four coastal locations in cast Antaratica, Mar Ecol Prog Sor 254:202, 205
752	wedden sear diet at four coastar focations in east Antarctica. Mai Ecol Flog Sei 234.295-303
754	Laws RM (1977) Seals and whales of the Southern Ocean Phil Trans R Soc Lond B 279. 81-96
755	Zune find (1977) Sould und mindes of the Souldon Obern Thir Hund R Soc Lond D 279. 01 90
756	Magozzi S Yool A Vander Zanden HB Wunder MB Trueman CN (2017) Using ocean models
757	to predict spatial and temporal variation in marine carbon isotopes. Ecosphere 8:e01763–20

758	
759	McCarthy MD, Benner R, Lee C, Fogel ML (2007) Amino acid nitrogen isotopic fractionation
760	patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter.
761	Geochim Cosmochim Ac 71:4727-4744
762	
763	McCarthy MD, Lehman J, Kudela R (2013) Compound-specific amino acid δ^{15} N patterns in
764	marine algae: Tracer potential for cyanobacterial vs. eukaryotic organic nitrogen sources in
765	the ocean. Geochim Cosmochim Ac 103:104-120
766	
767	McClelland JW, Montoya JP (2002) Trophic relationships and the nitrogen isotopic composition
768	of amino acids in plankton. Ecology 83:2173-2180
769	
770	McMahon KW, Hamady LL, Thorrold SR (2013) A review of ecogeochemistry approaches to
771	estimating movements of marine animals. Limnol Oceanogr 58:697-714
772	
773	McMahon KW, Thorrold SR, Elsdon TS, McCarthy MD (2015) Trophic discrimination of
774	nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnol
775	Oceanogr 60:1076-1087
776	
777	McMahon, KW, McCarthy MD (2016) Embracing variability in amino acid δ^{15} N fractionation:
778	mechanisms, implications, and applications for trophic ecology. Ecosphere 7:e01511
779	
780	Minagawa M, Wada E (1984) Stepwise enrichment of ¹⁵ N along food chains: Further evidence
781	and the relation between $\delta^{15}N$ and animal age. Geochim Cosmochim Ac 48:1135-1140
782	
783	Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE (2009)
784	Recent changes in phytoplankton communities associated with rapid regional climate change
785	along the western WAP. Science 323:1470-1473
786	
787	Nicol S (2006) Krill, currents, and sea ice: Euphausia superba and its changing
788	environment. Bioscience 56:111-120
789	
790	Nicol S, Foster J, Kawaguchi S (2012) The fishery for Antarctic krill–recent developments. Fish
791	Fish 13:30-40
792	
793	Ohkouchi N, Chikaraishi Y, Close HG, Fry B, Larsen T, Madigan DJ, McCarthy MD, McMahon
794	KW, Nagata T, Naito YI, Ogawa NO, Popp BN, Steffan S, Takano Y, Tayasu I, Wyatt ASJ,
795	Yamaguchi YT, Yokoyama Y (2017) Advances in the application of amino acid nitrogen
796	isotopic analysis in ecological and biogeochemical studies. Org Geochem 113:150-174
797	
798	Ostrom PH, Wiley AE, James HF, Rossman S, Walker WA, Zipkin EF, Chikaraishi Y (2016)
799	Broad-scale trophic shift in the pelagic North Pacific revealed by an oceanic seabird. Proc. R.
800	Soc. B. 284:20162436
801	
802	Pinkerton MH, Bradford-Grieve JM, Hanchet SM (2010) A balanced model of the food web of
803	the Ross Sea, Antarctica. CCAMLR Sci 17:1-31
804	

805 806 807	Plötz J, Bornemann H, Bornemann H, Knust R, Schröder A, Bester M (2001) foraging behaviour of weddell seals and its ecological implications. Polar Biol 24:901-909
807 808 809	Ponganis PJ, Stockard TK (2007) Short Note: The Antarctic toothfish: how common a prey for Weddell seals? Antarct Sci 19:441-442
810 811 812 813 814	Popp BN, Graham BS, Olson RJ, Hannides CCS, Lott MJ, López-Ibarra GA, Galván-Magaña F, Fry B (2007) Insight into the trophic ecology of the yellowfin tuna, <i>Thunnus albacares</i> , from compound-specific nitrogen isotope analysis of proteinaceous amino acids. In: Dawson T, Siegwolf R (eds) Stable Isotopes as Indicators of Ecological Change. Elsevier, New York, p
815 816 817 818	Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and
818 819 820	Quillfeldt P, Masello JF, McGill RAR, Adams M, Furness RW (2010) Moving polewards in
821 822 823	R Core Team (2014). R: A language and environment for statistical computing. Foundation for
824 825 826	Statistical Computing, Vienna, Austria Rau GH, Sweeney RF, Kaplan IR (1982) Plankton 13C: 12C ratio changes with latitude:
827 828	differences between northern and southern oceans. Deep Sea Res Pt I 29:1035-1039
829 830 831 832	Weddell Sea birds, seals, and fish: implications for diet and trophic structure. Mar Ecol Prog Ser 84:1-8
833 834 835	Reeves RR (2008) Guide to marine mammals of the world. Knopf Doubleday Publishing Group, New York
836 837	Schlitzer R (2015) Ocean Data View (ODV) version (4.7.4). http://odv.awi.de
838 839 840 841	Schmidt K, Atkinson A, Stübing D, McClelland JW, Montoya J P, Voss M (2003) Trophic relationships among Southern Ocean copepods and krill: some uses and limitations of a stable isotope approach. Limnol Oceanogr 48:277-289
842 843 844 845	Schmidt K, Atkinson A, Petzke KJ, Voss M, Pond DW (2006) Protozoans as a food source for Antarctic krill, Euphausia superba: Complementary insights from stomach content, fatty acids, and stable isotopes. Limnol Oceanogr 51:2409-2427
846 847 848 849	Sherwood OA, Lehmann MF, Schubert CJ, Scott DB, McCarthy MD (2011) Nutrient regime shift in the western North Atlantic indicated by compound-specific δ^{15} N of deep-sea gorgonian corals. P Natl Acad Sci USA 108:1011-1015

850 851 852	Skinner JD, Klages NTW (1994) On some aspects of the biology of the Ross seal <i>Ommatophoca rossii</i> from King Haakon VII Sea, Antarctica. Polar Biol 14:467-472
853 854 855	Smith WO, Comiso JC (2008). Influence of sea ice on primary production in the Southern Ocean: A satellite perspective. J Geophys Res Oceans 113:C05S93
855 856 857	Smith Jr WO, Ainley DG, Arrigo KR, Dinniman MS (2014) The Oceanography and Ecology of the Ross Sea. Annu Rev Mar Sci 6:469-487
858 859 860 861 862	Somes CJ, Schmittner A, Galbraith ED, Lehmann MF, Altabet MA, Montoya JP, Letelier RM, Mix AC, Bourbonnais A, Eby M (2010) Simulating the global distribution of nitrogen isotopes in the ocean. Global Biogeochem Cycles 24:16
862 863 864 865	Staniland IJ (2002) Investigating the biases in the use of hard prey remains to identify diet composition using Antarctic fur seals (<i>Arctocephalus gazella</i>) in captive feeding trials. Mar Mamm Sci 18:223-243
866 867 868 869	Trivelpiece WZ, Hinke JT, Miller AK, Reiss CS, Trivelpiece SG, Watters GM (2011)Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc Natl Acad Sci USA 108:7625-7628
870 871 872	Vander Zanden MJ, Clayton MK, Moody EK, Solomon CT, Weidel BC (2015) Stable isotope turnover and half-life in animal tissues: a literature synthesis. PloS ONE 10:e0116182
873 874 875 876 877	Yonezaki S, Kiyota M, Baba N, Koido T, Takemura A (2003) Size distribution of the hard remains of prey in the digestive tract of northern fur seal (<i>Callorhinus ursinus</i>) and related biases in diet estimation by scat analyses. Mamm Study 28:97-102
878 879 880	Zhao L, Castellini MA, Mau TL, Trumble SJ (2004) Trophic interactions of Antarctic seals as determined by stable isotope signatures. Polar Biol 27:368-373

885 886 887 Fig. 1. Bulk δ^{15} N values versus δ^{13} C values for Ross seals (green circles), Weddell (blue squares), and crabeater (orange triangles) in the West Antarctic.

889 890 891 892 Fig. 2. Spatial variation in $\delta^{13}C$ (a) and $\delta^{15}N$ (b) values of Weddell seals. Figures were produced in Ocean Data View 4.7.4 (Schlitzer 2015).

Fig. 3. Spatial variation in $\delta^{13}C$ (a) and $\delta^{15}N$ (b) values of crabeater seals. Figures were produced in Ocean Data View 4.7.4 (Schlitzer 2015).

898 899 900 Fig. 4. Mean δ^{15} N values (± 1 SD) of amino acids for Ross (green circles), Weddell (blue squares), and crabeater (orange triangles) seals. Significant differences (p < 0.05) among species for an amino acid 901 902 are indicated with asterisks. Amino acids are divided into trophic and source amino acids, with Gly and Ser separate given uncertainty in their classification for marine mammals (McMahon and McCarthy 903 2016).

Fig. 5. Spatial variation in δ^{15} N values of Pro (a) and Phe (b) values for crabeater seals. Figures were produced in Ocean Data View 4.7.4 (Schlitzer 2015).

Fig. 6. Comparison of δ^{15} N values (mean ± 1 SD) of Pro, bulk material, and Phe for crabeater seals. Dark

910 911 912 913 914 orange circles, medium orange triangles, light orange squares represent Pro, bulk, and Phe δ^{15} N values, respectively. Bulk δ^{15} N values represent whole blood, with corrections applied if the given sample type

analyzed was not whole blood.

1	
2	SUPPLEMENTAL MATERIAL
3	
4	Relationships of bulk δ^{13} C and δ^{15} N values with gender, sampling period, age class, and
5	body mass of the Antarctic seals
6	Sampling period, gender, and age class have no significant effects on the bulk $\delta^{13}C$
7	values of Ross Seals (Figs. S5 and S6). However, there is a significant, but weak negative
8	relationship between body mass and δ^{13} C values (R ² value of 0.3 from a linear regression
9	analysis, Fig. S6). Sampling period, gender, age class, and body mass all have no significant
10	effects on the bulk δ^{15} N values of Ross seals (Figs. S5 and S6).
11	For Weddell seals, sampling period, gender, and body mass have no significant effects on
12	bulk δ^{13} C values (Figs. S7 and S8). Adult Weddell seals have significantly higher bulk δ^{13} C
13	values $(-24.9 \pm 0.6 \%, n=93)$ than juveniles $(-25.2 \pm 0.6 \%, n=17)$ and subadults $(-25.4 \pm 0.5 \%, n=17)$
14	n=15) ($p = 0.002$ in both cases). Sampling period, gender, and body mass have no significant
15	effects on bulk δ^{15} N values (Figs. S7, and S8). However, Weddell bulk δ^{15} N values are
16	significantly lower in subadults (11.9 \pm 0.7 ‰, <i>n</i> =15) than juveniles (12.6 \pm 0.6 ‰, <i>n</i> =17) and
17	adults $(12.3 \pm 0.6 \%, n=93)$ (<i>p</i> -values of 0.02 and 0.004, correspondingly, from Bonferroni post-
18	hoc comparisons) (Fig. S7).
19	Crabeater seal δ^{13} C values are not affected significantly by sampling period or gender
20	(Fig. S9). Adult crabeater seals have significantly higher δ^{13} C values (-24.6 ± 1.3 ‰, <i>n</i> =76) than
21	subadults (-26.3 \pm 0.2 ‰, <i>n</i> =10) and juveniles (-26.2 \pm 0.4 ‰, <i>n</i> =11) from Bonferroni post-hoc
22	comparisons (p <0.001 in both cases) (Fig. S9). Additionally, crabeater seal δ^{13} C values increase
23	significantly with increasing body mass (R ² value of 0.4 from a linear regression analysis) (Fig.

S10). The δ^{15} N values of crabeater seals do not vary significantly with gender (Fig. S9). One 24 significant difference occurs across sampling periods: Amundsen Sea δ^{15} N values are 25 significantly higher for the austral summer 2007/08 sampling $(8.1 \pm 0.4 \%, n = 14)$ than the 26 27 austral summer 2010/11 sampling $(7.3 \pm 0.6 \text{ })$, n = 21 (p<0.001 from Bonferroni post-hoc comparisons). Adult crabeater seals have significantly lower δ^{15} N values (7.0 ± 0.8 ‰, *n* = 76) 28 29 than subadult animals $(8.3 \pm 0.4 \%, n = 10, p < 0.0001$ for the Bonferroni post-hoc comparison) 30 and juvenile seals $(7.8 \pm 0.3 \text{ }$ %, n = 11, p = 0.01 for the Bonferroni post-hoc comparison) (Fig. S9). The δ^{15} N values significantly increase with decreasing body mass (Fig. S10, R² value of 0.4 31 32 from a linear regression analysis). 33 Discussion of relationships of bulk isotope values with gender, sampling period, age class. 34 and body mass of the Antarctic seals Our Ross seal bulk δ^{13} C and δ^{15} N results suggest a similar diet and foraging region across 35 36 different genders and age classes. In contrast, the significant relationship between body mass and δ^{13} C (increasing δ^{13} C values with decreasing body mass) suggests that Ross seals of different 37 38 sizes are foraging in slightly different areas. However, no significant relationship exists between body mass and phenylalanine (Phe) δ^{15} N value for Ross seals, which varies across different 39 40 environments as described in the main text. Zhao et al. (2004) found no significant effects of age or sex on Ross seal δ^{13} C and δ^{15} N values. 41 Our Weddell and crabeater seal results show no significant effects of gender on δ^{13} C and 42 δ^{15} N values, indicating that foraging area and diet do not differ across genders for these species. 43 This finding is consistent with the results of Zhao et al. (2004) and Burns et al. (1998) for 44

45 crabeater and Weddell seals, respectively. However, Zhao et al. (2004) reported that male

46 Weddell seals have significantly higher δ^{13} C and δ^{15} N values than females.

Weddell seal bulk δ^{13} C values of adults are significantly higher than those of juveniles 47 and subadults, suggesting that these animals vary their foraging region with age. In contrast, 48 Zhao et al. (2004) and Aubail et al. (2011) found no significant variation in bulk δ^{13} C values 49 across Weddell seal age classes. However, Goetz et al. (2017) found increasing δ^{13} C values with 50 51 age for Weddell seals from analysis of red blood cells (RBC), consistent with our finding. Our 52 results point to adult crabeater seals foraging in a different area than subadults and juveniles, perhaps further offshore given their higher δ^{13} C values, as well as the positive relationship 53 between body mass and δ^{13} C value for this species. Likewise, Aubail et al. (2011) found 54 significantly higher δ^{13} C values in crabeater adults than juveniles, and Hückstädt et al. (2012) 55 found δ^{13} C values significantly increasing with increasing crabeater seal body mass. In contrast, 56 Zhao et al. (2004) found no significant variability in δ^{13} C values across age groups. 57 In this study, both Weddell and crabeater seals have significant variability in δ^{15} N values 58 across age classes. For crabeater seals, our finding of significantly lower δ^{15} N values in adults 59 60 than juveniles is supported by the results of Aubail et al. (2011). The observed bulk isotope 61 variation for Weddell and crabeater seals in this study could have resulted from differences in 62 foraging regions, diet, or both between the various age classes. We did not attempt to explore the drivers of δ^{15} N variations across age classes of Weddell and crabeater seals further in our 63 64 compound-specific isotope analysis of amino acids (CSI-AA) since limitations entailed in this analysis (i.e., expense and extensive laboratory processing) did not allow for aminio acid $\delta^{15}N$ 65 66 measurements from a sufficient number of samples for such an investigation. For Weddell seals, we only conducted CSI-AA on tissues from adults. We performed CSI-AA on one subadult and 67 five adults for crabeater seals. The subadult had a higher Phe δ^{15} N value (6.8 ‰) relative to that 68 69 of the adults $(5.6 \pm 0.3 \text{ })$ for the Amundsen/Ross sea region. The nitrogen isotope values of Pro

and Glu for the subadult (15.7 ‰ and 15.1 ‰, respectively) were slightly higher than Pro and Glu δ^{15} N values of adults (15.2 ± 0.8 ‰ and 14.7 ± 0.5 ‰) for the Amundsen and Ross Seas. This result indicates the higher bulk δ^{15} N values of subadult than adult crabeater seals may be driven by the former using a habitat with moderately higher baseline δ^{15} N values and, perhaps, nitrogen drawdown than the latter. However, CSI-AA must be conducted on considerably more crabeater seal samples before δ^{15} N variation across age classes can be clearly established and the possible causes can be identified.

The results of other studies measuring bulk δ^{15} N values of Weddell and crabeater seals 77 differed from our findings. Goetz et al. (2017) found increasing δ^{15} N values with increasing 78 Weddell seal age. Zhao et al. (2004) compared δ^{15} N values of Weddell seal pups, juveniles, 79 subadults, and adults, and found only one significant result: adults have higher δ^{15} N values than 80 81 subadults. Aubail et al. (2011) reported no significant difference across Weddell seal age groups, 82 which included juveniles and adults. For crabeater seals, Zhao et al. (2004) found no significant variability in δ^{15} N values of pups, juveniles, subadults, and adults. Overall, the effects of age, as 83 84 well as gender, on the isotopic values of crabeater and Weddell seals vary across the research to 85 date. Furthermore, isotope baseline variability may contribute to the differences in bulk isotope 86 values across age groups or genders, as mentioned above and discussed in detail in the main text.

- 87
- 88
- 89
- 90
- 91
- 92

93

Fig. S1. Spatial variation in bulk δ^{13} C (a) and δ^{15} N (b) values of Ross seals. Figures were produced in Ocean Data View 4.7.4 (Schlitzer 2015).

Amino Acid

98 99 Fig. S2. δ^{15} N values (mean ± 1 standard deviation) of threonine for Ross, Weddell, and crabeater seals. Species are shown with colors: blue squares for Weddell seals, orange triangles for crabeater seals, and 100

- green circles for Ross seals.
- 101 102 103

105 106 107 108 Fig. S3. Spatial variation in δ^{15} N values of Pro (a) and Phe (b) values for Ross seals. Figures were produced in Ocean Data View 4.7.4 (Schlitzer 2015).

Fig. S4. Spatial variation in δ^{15} N values of Pro (a) and Phe (b) values for Weddell seals. Figures were produced in Ocean Data View 4.7.4 (Schlitzer 2015).

115 116 117 118 119 Fig. S5. Bulk δ^{13} C and δ^{15} N for Ross Seals. Age class and gender are indicated with colors (light green for subadults and dark green for adults) and shapes (triangles and circles for males and females, correspondingly).

Fig. S6. Mass (kg) versus bulk $\delta^{13}C$ (a) and $\delta^{15}N$ (b) values for Ross Seals.

- 122 123 124 125 126 127 128 129 130

131 132 133 134 135

Fig. S7. Bulk δ^{13} C and δ^{15} N for Weddell Seals. Age class and gender are indicated with colors (light blue for juveniles, medium blue for subadults, and dark blue for adults) and shapes (triangles, circles, and squares for males, females, and unknown sex, correspondingly).

Antarctic Seal Foraging Ecology

- 137 138 139 140 141 Fig. S8. Mass (kg) versus bulk $\delta^{13}C$ (a) and $\delta^{15}N$ (b) values of Weddell
- Seals.

 $\begin{array}{c} 142\\ 143 \end{array}$

Fig. S9. Bulk δ^{13} C and δ^{15} N for Crabeater Seals. Age class and gender are indicated with colors (light orange for juveniles, medium orange for subadults, and dark orange for adults) and shapes (triangles, 144 145 146 circles, and squares for males, females, and unknown sex, correspondingly).

- 149 150 151 152 Fig. S10. Mass (kg) versus bulk $\delta^{13}C$ (a) and $\delta^{15}N$ (b) values of crabeater Seals.

153 Table S1. Sample information for Antarctic Seals. In cases where multiple sample types were obtained

154 155 from a seal, we indicate the tissue from which isotopic values were used in figures and statistical

analyses. Negative latitude and longitude indicate degrees south and west, respectively. Abbreviations:

156 DD, decimal degrees; WB, whole blood; RBCs, red blood cells; F, female; M, male; na, information not

150 157 158 159 available; Su, summer; Sp, spring; F, fall; W, winter; Oden, RV Oden cruises; MCM, McMurdo Station region; WAP, West Antarctic Peninsula area; Ad, adult; Sub, subadult; Juv, juvenile; Lat, latitude; Long,

longitude.

Species	Sample ID	Source	Season	Sample Type	Age Class	Sex	Weight (kg)	Lat (DD)	Long (DD)	
Crabeater	C02	Oden	Su 2010/11	Clot	Ad	F	163	-68.6	-102.3	
	C03	Oden	Su 2008/09	WB	Sub	F	na	-70.6	-107.0	
	C03	Oden	Su 2010/11	Clot	Ad	F	210	-68.6	-102.5	
	C04	Oden	Su 2008/09	WB	Sub	М	92	-70.6	-107.0	
	C06	Oden	Su 2008/09	WB	Sub	М	76	-71.1	-110.5	
	C07	Oden	Su 2008/09	WB	Sub	F	92	-71.1	-110.5	
	C07	Oden	Su 2010/11	Hair	Ad	F	205	-69.5	-103.7	
	C10	Oden	Su 2010/11	Hair	Ad	F	225.4	-69.5	-103.7	
	C11	Oden	Su 2010/11	Hair	Ad	F	264	-69.5	-103.7	
	C14	Oden	Su 2010/11	Clot	Ad	F	215	-70.1	-107.4	
	C15	Oden	Su 2010/11	WB	Sub	М	170	-70.1	-107.4	
	C20	Oden	Su 2008/09	WB	Ad	М	190	-72.6	-116.0	
	C20	Oden	Su 2010/11	RBCs	Juv	М	90	-72.7	-114.2	
	C21	Oden	Su 2008/09	Clot	Sub	М	112	-72.6	-116.0	
	C21	Oden	Su 2010/11	RBCs	Juv	М	103	-72.7	-114.2	
	C22	Oden	Su 2008/09	Clot	Sub	М	113	-72.6	-116.0	
	C32	Oden	Su 2008/09	WB	Ad	F	230	-70.2	-119.9	
	C33	Oden	Su 2008/09	WB	Ad	М	194	-70.2	-119.9	
	C43	Oden	Su 2008/09	WB	Ad	F	190	-69.4	-125.3	
	C44	Oden	Su 2008/09	WB	Ad	М	182	-69.4	-125.3	
	C45	Oden	Su 2008/09	WB	Ad	F	230	-70.2	-133.5	
	C46	Oden	Su 2008/09	WB	Sub	F	90	-72.5	-146.5	
	C47	Oden	Su 2008/09	WB	Ad	М	192	-74.4	-150.7	
	C48	Oden	Su 2008/09	WB	Ad	F	177	-74.4	-150.7	1
	C50	Oden	Su 2008/09	WB	Sub	М	84	-75.4	-151.3	

C51	Oden	Su 2008/09	WB	Ad	F	210	-75.4	-151.3
C52	Oden	Su 2008/09	WB	Ad	F	183	-75.4	-151.3
C143	Oden	Su 2010/11	WB	Juv	F	105	-72.1	-119.7
C144	Oden	Su 2010/11	WB	Juv	F	118	-72.1	-119.7
C153	Oden	Su 2010/11	WB	Ad	М	192	-72.1	-123.5
C154	Oden	Su 2010/11	WB	Ad	М	177	-72.1	-123.5
C155	Oden	Su 2010/11	Hair	Juv	М	108	-72.2	-126.7
C156	Oden	Su 2010/11	WB	Juv	М	123	-72.2	-126.7
C157	Oden	Su 2010/11	WB	Juv	F	113	-72.2	-126.7
C158	Oden	Su 2010/11	WB	Juv	F	89	-72.2	-126.7
C173	Oden	Su 2010/11	WB	Ad	F	209	-72.8	-135.6
C174	Oden	Su 2010/11	WB	Ad	М	175	-75.3	-139.5
C175	Oden	Su 2010/11	Hair	Ad	F	215	-73.3	-139.5
C176	Oden	Su 2010/11	WB	Ad	М	205	-73.3	-139.5
C177	Oden	Su 2010/11	WB	Ad	М	194	-75.8	-150.0
Cr 1	MCM	Su 2009/10	Hair	Juv	na	na	-77.6	166.2
Cr Royds	MCM	Su 2009/10	Hair	Juv	na	na	-77.6	166.2
Cr 2	MCM	Su 2009/10	Hair	Juv	na	na	-77.6	166.2
CS11- 01	MCM	Su 2010/11	WB	Ad	na	na	-77.7	166.5
G001	Hückstädt et al	F 2001	Whisker	Ad	F	na	-673	-67.6
0001	(2012a) Hückstödt		() 110101		-		0,.0	0710
G003	et al.	F 2001	Whisker	Ad	F	258	-67.3	-67.6
	(2012a) Hückstädt							
G004	et al. (2012a)	F 2001	Whisker	Ad	М	342	-69.2	-72.3
G005	Hückstädt et al	F 2001	Whisker	Ad	F	293	-69 3	-72.4
	(2012a) Hückstödt	001			-		07.0	
G006	et al.	F 2001	Whisker	Ad	F	413	-69.3	-72.5
G007	(2012a) Hückstädt et al. (2012a)	F 2001	Whisker	Ad	М	287	-69.3	-72.5

G008	Hückstädt et al. (2012a)	F 2001	Whisker	Ad	F	355	-69.1	-72.4
G009	Hückstädt et al. (2012a)	W 2001	Whisker	Ad	М	179	-67.7	-69.3
G010	Hückstädt et al. (2012a)	W 2001	Whisker	Ad	F	307	-68.1	-70.4
G012	Hückstädt et al. (2012a)	W 2001	Whisker	Ad	F	288	-68.1	-70.2
G013	et al. (2012a)	W 2001	Whisker	Ad	М	234	-68.1	-70.2
G014	et al. (2012a)	W 2001	Whisker	Ad	М	284	-68.1	-70.1
G015	et al. (2012a)	W 2001	Whisker	Ad	М	234	-67.2	-70.2
G016	et al. (2012a)	W 2001	Whisker	Ad	F	273	-67.4	-70.9
G017	et al. (2012a)	F 2002	Whisker	Ad	F	118	-66.4	-66.8
G018	et al. (2012a)	F 2002	Whisker	Ad	М	157	-66.8	-66.8
G019	et al. (2012a)	F 2002	Whisker	Ad	F	156	-66.8	-66.8
G020	et al. (2012a)	F 2002	Whisker	Ad	М	143	-66.6	-67.5
G021	et al. (2012a)	F 2002	Whisker	Ad	М	271	-66.6	-67.5
G022	et al. (2012a)	F 2002	Whisker	Ad	F	268	-67.4	-67.7
G023	et al. (2012a)	F 2002	Whisker	Ad	М	174	-67.6	-68.2
G024	et al. (2012a)	F 2002	Whisker	Ad	F	256	-67.6	-69.0
G026	et al. (2012a)	F 2002	Whisker	Ad	F	266	-67.6	-69.0
G027	et al. (2012a)	F 2002	Whisker	Ad	М	226	-66.6	-67.5

G028	Hückstädt et al. (2012a)	F 2002	Whisker	Ad	F	314	-68.5	-69.8
G029	Hückstädt et al. (2012a)	F 2002	Whisker	Ad	М	242	-68.7	-70.0
G030	Hückstädt et al. (2012a)	F 2002	Whisker	Ad	М	250	-66.6	-67.5
G031	Hückstädt et al. (2012a)	F 2002	Whisker	Ad	F	385	-66.3	-66.6
G032	Hückstädt et al. (2012a)	F 2002	Whisker	Ad	F	230	-68.8	-69.9
G033	Hückstädt et al. (2012a)	W 2002	Whisker	Ad	F	268	-66.3	-66.7
G034	Hückstädt et al. (2012a)	W 2002	Whisker	Ad	F	295	-66.5	-67.1
G035	Hückstädt et al. (2012a)	W 2002	Whisker	Ad	F	238	-66.4	-66.9
G036	Hückstädt et al. (2012a)	W 2002	Whisker	Ad	F	207	-66.4	-66.9
G038	Hückstädt et al. (2012a)	W 2002	Whisker	Ad	М	273	-67.2	-70.6
G039	Hückstädt et al. (2012a)	W 2002	Whisker	Ad	М	247	-68.6	-76.0
G040	Hückstädt et al. (2012a)	W 2002	Whisker	Ad	М	302	-68.5	-75.8
G041	Hückstädt et al. (2012a)	W 2002	Whisker	Ad	М	269	-68.1	-75.0
G042	Hückstädt et al. (2012a)	W 2002	Whisker	Ad	М	224	-68.0	-74.9
G043	Hückstädt et al. (2012a)	W 2002	Whisker	Ad	М	224	-68.0	-74.8
G044	Hückstädt et al. (2012a)	W 2002	Whisker	Ad	F	280	-65.7	-68.7
G045	Hückstädt et al. (2012a)	W 2002	Whisker	Ad	F	221	-65.6	-68.6
G046	Hückstädt et al. (2012a)	W 2002	Whisker	Ad	М	237	-65.5	-68.5

	G047	Hückstädt et al. (2012a)	W 2002	Whisker	Ad	М	254	-65.7	-68.5
	G102	Hückstädt et al. (2012a)	F 2007	Whisker	Ad	F	286	-67.2	-66.9
	G104	Hückstädt et al. (2012a)	F 2007	Whisker	Ad	F	197	-67.2	-66.9
	G105	Hückstädt et al. (2012a)	F 2007	Whisker	Ad	F	251	-67.2	-66.8
	G106	Hückstädt et al. (2012a)	F 2007	Whisker	Ad	F	207	-67.2	-66.8
	G107	Hückstädt et al. (2012a)	F 2007	Whisker	Ad	F	315	-67.0	-67.4
	G108	Hückstädt et al. (2012a)	F 2007	Whisker	Ad	F	207	-67.2	-66.8
	G110	Hückstädt et al. (2012a)	F 2007	Whisker	Ad	F	123	-67.1	-66.8
	G112	Hückstädt et al. (2012a)	F 2007	Whisker	Ad	F	252	-65.2	-64.2
	G113	Hückstädt et al. (2012a)	F 2007	Whisker	Ad	F	244	-66.1	-65.4
	W02	Oden	Su 2008/09	WB	Sub	М	113	-71.7	-112.2
Weddell	W01	Oden	Su 2010/11	Hair	Ad	М	251	-72.6	-115.1
	W02	Oden	Su 2010/11	Hair	Ad	F	300	-72.6	-115.1
	W04	Oden	Su 2010/11	Clot	Ad	F	400	-72.8	-114.4
	W06	Oden	Su 2010/11	Clot	Ad	М	400	-72.9	-114.2
	W10	Oden	Su 2008/09	WB	Sub	F	156	-77.3	-165.5
	W11	Oden	Su 2008/09	WB	Sub	М	153	-77.3	-165.5
	W12	Oden	Su 2008/09	WB	Ad	М	318	-77.3	-165.5
	W14	Oden	Su 2008/09	WB	Ad	М	288	-77.3	-165.5
	W15	Oden	Su 2008/09	WB	Sub	М	211	-77.3	-165.5
	W17	Oden	Su 2008/09	WB	Ad	М	278	-77.3	-165.5
	W19	Oden	Su 2008/09	WB	Ad	F	309	-77.3	-165.5
	W103	Oden	Su 2010/11	WB	Ad	М	300	-72.6	-115.1

W112	Oden	Su 2010/11	Hair	Ad	М	350	-72.9	-114.0
W113	Oden	Su 2010/11	WB	Ad	М	255	-72.9	-114.0
W116	Oden	Su 2010/11	WB	Ad	М	300	-71.7	-115.5
W117	Oden	Su 2010/11	WB	Ad	F	290	-71.7	-115.5
W118	Oden	Su 2010/11	WB	Ad	F	216	-71.7	-115.5
W130	Oden	Su 2010/11	WB	Sub	М	158	-72.5	-116.6
W133	Oden	Su 2010/11	WB	Ad	М	300	-72.5	-116.6
W136	Oden	Su 2010/11	WB	Ad	F	235	-72.9	-116.9
W137	Oden	Su 2010/11	WB	Ad	F	243	-72.9	-116.9
W155	Oden	Su 2010/11	WB	Juv	F	155	-72.1	-119.2
W157	Oden	Su 2010/11	WB	Juv	F	108	-72.1	-119.2
W174	Oden	Su 2010/11	WB	Ad	F	250	-72.1	-119.7
W175	Oden	Su 2010/11	WB	Ad	М	300	-72.1	-119.7
W176	Oden	Su 2010/11	WB	Ad	М	na	-72.1	-119.7
W177	Oden	Su 2010/11	WB	Ad	М	234	-72.1	-119.7
W182	Oden	Su 2010/11	Hair	Sub	М	215	-72.8	-135.8
W185	Oden	Su 2010/11	WB	Ad	F	400	-75.5	-184.9
W186	Oden	Su 2010/11	WB	Sub	F	154	-75.5	-184.9
W208	Oden	Su 2010/11	WB	Sub	М	135	-78.7	-164.2
W209	Oden	Su 2010/11	WB	Juv	М	61	-78.7	-164.2
W214	Oden	Su 2010/11	WB	Sub	F	184	-77.6	-166.3
W216	Oden	Su 2010/11	WB	Juv	F	91	-77.6	-166.3
W219	Oden	Su 2010/11	WB	Sub	F	237	-77.7	-164.7
W220	Oden	Su 2010/11	WB	Ad	F	261	-77.7	-164.7
W222	Oden	Su 2010/11	WB	Ad	М	350	-77.7	-164.7
W223	Oden	Su 2010/11	WB	Juv	М	90	-77.7	-164.7
WS10- 11	МСМ	Su 2009/10	RBCs	Ad	F	308.5	-75.8	162.8
WS10- 12	MCM	Su 2009/10	RBCs	Ad	F	282.5	-75.8	162.8
WS10- 13	МСМ	Su 2009/10	RBCs	Ad	F	245	-75.8	162.8

WS10- 17	МСМ	Su 2009/10	RBCs	Ad	F	356	-76.5	162.8
WS10- 18	МСМ	Su 2009/10	RBCs	Ad	F	265	-76.5	162.8
WS11- 11	МСМ	Su 2010/11	WB	Ad	F	281	-76.6	162.7
WS11- 12	МСМ	Su 2010/11	WB	Ad	F	355	-77.9	166.8
WS11- 13	МСМ	Su 2010/11	WB	Ad	F	247	-76.9	162.5
WS11- 14	МСМ	Su 2010/11	WB	Ad	F	286	-76.6	162.7
WS11- 15	МСМ	Su 2010/11	WB	Ad	F	195	-77.2	163.5
WS12- 11	МСМ	Su 2011/12	RBCs	Ad	F	273	-76.9	162.8
WS12- 12	МСМ	Su 2011/12	RBCs	Ad	F	374	-77.9	166.8
WS12- 13	МСМ	Su 2011/12	RBCs	Ad	F	410	-77.9	166.8
WS12- 14	МСМ	Su 2011/12	RBCs	Ad	М	227	-76.1	162.4
WS12- 15	МСМ	Su 2011/12	RBCs	Ad	М	289	-76.5	162.7
WS12- 22	МСМ	Sp 2012	WB	Ad	F	451	-77.7	166.5
WS12- 23	МСМ	Sp 2012	WB	Ad	F	442	-77.7	166.9
WS12- 24	МСМ	Sp 2012	WB	Ad	F	339	-77.7	166.8
WS12- 25	МСМ	Sp 2012	WB	Ad	F	355	-77.7	166.9
WS12- 26	МСМ	Sp 2012	WB	Ad	F	408	-77.7	166.7
G103 G111	WAP WAP	F 2007 F 2007	Serum Plasma	Ad Ad	F F	306 280	-67.2 -67.1	-66.9 -66.8
LW11- 03	МСМ	Su 2010/11	WB	Juv	na	na	-74.9	163.7
LW11- 05	МСМ	Su 2010/11	WB	Juv	na	na	-74.9	163.7
LW11- 06	МСМ	Su 2010/11	WB	Juv	na	na	-74.9	163.7
LW11- 07	МСМ	Su 2010/11	WB	Juv	na	na	-74.9	163.7
LW11- 08	МСМ	Su 2010/11	WB	Juv	na	na	-74.9	163.7
LW11- 09	МСМ	Su 2010/11	WB	Juv	na	na	-74.9	163.7
LW11- 10	МСМ	Su 2010/11	WB	Juv	na	na	-74.9	163.7
LW11- 11	МСМ	Su 2010/11	WB	Juv	na	na	-74.9	163.7
LW11- 12	МСМ	Su 2010/11	WB	Juv	na	na	-74.9	163.7
LW11- 13	МСМ	Su 2010/11	WB	Juv	na	na	-74.9	163.7

LW11- 14	MCM	Su 2010/11	WB	Juv	na	na	-74.9	163.7
LW11- 15	MCM	Su 2010/11	WB	Juv	na	na	-74.9	163.7
LW15- 01	MCM	Sp 2015	WB	Ad	М	300	-77.8	166.8
LW15- 02	MCM	Sp 2015	WB	Sub	М	280	-77.8	166.8
LW15- 03	MCM	Sp 2015	WB	Ad	М	300	-77.8	166.8
LW15- 04	MCM	Sp 2015	WB	Ad	М	300	-77.8	166.8
LW15- 05	MCM	Sp 2015	WB	Ad	М	300	-77.8	166.8
LW15- 06	MCM	Sp 2015	WB	Ad	М	300	-77.7	166.4
LW15- 07	MCM	Sp 2015	WB	Ad	F	350	-77.7	166.4
LW15- 08	МСМ	Sp 2015	WB	Sub	F	250	-77.8	166.8
LW15- 09	МСМ	Sp 2015	WB	Sub	F	275	-77.7	166.3
LW15- 10	МСМ	Sp 2015	WB	Sub	М	230	-77.7	166.4
LW15- 11	МСМ	Sp 2015	WB	Sub	F	250	-77.7	166.4
LW15- 12	МСМ	Sp 2015	WB	Sub	М	200	-77.7	166.4
W006	WAP	Su 2009/10	Whisker	Ad	М	293	-62.5	-60.8
W013	WAP	Su 2009/10	Whisker	Ad	F	293	-62.5	-60.8
WS10- 01	Goetz et al. (2017)	Su 2009/10	Whisker	Ad	F	327	-77.8	166.8
WS10- 02	Goetz et al. (2017)	Su 2009/10	Whisker	Ad	F	378	-77.7	166.8
WS10- 03	Goetz et al. (2017)	Su 2009/10	Whisker	Ad	F	214	-77.7	166.7
WS10- 04	Goetz et al. (2017)	Su 2009/10	Whisker	Ad	F	195	-77.7	166.7
WS10- 05	Goetz et al. (2017)	Su 2009/10	Whisker	Ad	F	271	-77.7	166.7
WS10-	Goetz et	Su 2009/10	Whisker	Ad	М	271	-77.6	166.2
WS10-	$\begin{array}{c} \text{al. (2017)} \\ \text{Goetz et} \\ \text{cl. (2017)} \end{array}$	Su 2009/10	Whisker	Ad	F	234	-77.7	166.7
WS10-	$\begin{array}{c c} al. (2017) \\ Goetz et \\ al. (2017) \end{array}$	Su 2009/10	Whisker	Ad	М	184	-76.6	162.7
WS10-	$\begin{array}{c c} al. (2017) \\ Goetz et \\ al. (2017) \end{array}$	Su 2009/10	Whisker	Ad	М	181	-76.6	162.7
WS10-	$\begin{array}{c} \text{al. } (2017) \\ \text{Goetz et} \\ \text{al. } (2017) \end{array}$	Su 2009/10	Whisker	Ad	F	393	-77.8	166.8
WS10- 22	Goetz et al. (2017)	Su 2009/10	Whisker	Ad	М	290	-77.8	166.8

WS11- 03	Goetz et al. (2017)	Su 2010/11	Whisker	Ad	F	367	-77.9	166.8
WS11- 04	Goetz et al. (2017)	Su 2010/11	Whisker	Ad	F	402	-77.9	166.8
WS11- 05	Goetz et al. (2017)	Su 2010/11	Whisker	Ad	М	197	-76.6	162.7
WS11- 06	Goetz et al. (2017)	Su 2010/11	Whisker	Ad	F	206	-76.6	162.7
WS11- 08	Goetz et al. (2017)	Su 2010/11	Whisker	Ad	F	277	-76.6	162.7
WS11- 09	Goetz et al. (2017)	Su 2010/11	Whisker	Ad	F	336	-77.9	166.8
WS11- 17	Goetz et al. (2017)	Su 2010/11	Whisker	Ad	F	359	-77.9	166.7
WS11- 18	Goetz et al. (2017)	Su 2010/11	Whisker	Ad	F	247	-77.9	166.7
WS11- 19	Goetz et al. (2017)	Su 2010/11	Whisker	Ad	М	266	-77.7	166.7
WS11- 21	Goetz et al. (2017)	Su 2010/11	Whisker	Ad	F	382	-77.9	166.8
WS11- 37	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	М	331	-77.4	166.3
WS11- 38	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	М	268	-77.4	166.3
WS11- 39	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	М	268	-77.7	166.3
WS11- 40	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	М	268	-77.7	166.3
WS11- 41	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	М	268	-77.7	166.3
WS12- 01	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	F	405	-77.9	166.8
WS12- 02	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	F	351	-77.0	162.8
WS12- 04	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	F	351	-77.9	166.8
WS12- 05	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	F	386	-76.6	166.7
WS12- 06	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	F	332	-76.5	166.8
WS12- 07	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	F	416	-77.8	166.8
WS12- 08	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	F	429	-77.8	166.8
WS12- 09	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	F	429	-77.8	166.8
WS12- 10	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	М	221	-76.6	162.9
WS12- 16	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	М	230	-76.5	162.7
WS12- 17	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	F	230	-77.8	166.8
WS12- 19	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	F	230	-77.9	166.8

	WS12- 20	Goetz et al. (2017)	Su 2011/12	Whisker	Ad	М	233	-76.1	163.1
Ross	R01	Oden	Su 2008/09	WB	Sub	М	107	-69.4	-125.3
	R101	Oden	Su 2010/11	WB	Ad	М	180	-72.1	-123.2
	R102	Oden	Su 2010/11	WB	Ad	F	145	-72.2	-123.2
	R103	Oden	Su 2010/11	WB	Sub	F	102	-72.1	-123.1
	R104	Oden	Su 2010/11	WB	Ad	М	205	-72.1	-123.5
	R105	Oden	Su 2010/11	WB	Ad	М	151	-72.2	-126.9
	R106	Oden	Su 2010/11	WB	Ad	F	174	-72.1	-127.0
	R107	Oden	Su 2010/11	WB	Ad	F	131	-72.2	-127.6
	R108	Oden	Su 2010/11	WB	Ad	F	198	-72.2	-132.9
	R109	Oden	Su 2010/11	WB	Ad	F	153	-72.2	-133.0
	R110	Oden	Su 2010/11	Hair	Ad	F	205	-72.9	-137.1
	R111	Oden	Su 2010/11	WB	Sub	М	144	-72.8	-136.0
	R112	Oden	Su 2010/11	WB	Ad	F	192	-73.4	-139.4
	R113	Oden	Su 2010/11	WB	Ad	F	141	-73.3	-139.4
	R114	Oden	Su 2010/11	WB	Ad	М	181	-75.8	-150.0

169 Table S2. Effect of lipid extraction on isotopic values of crabeater, Weddell, and Ross seals. Sample

170 171 ID as in Table S1. Abbreviations: WB, whole blood without lipid extraction; LE, whole blood with

lipid extraction. The difference in isotopic value between whole blood samples with and without lipid 172 extraction is reported. The average difference is 0.0 ± 0.1 ‰ and 0.2 ± 0.1 ‰ for δ^{13} C and δ^{15} N,

173

respectively. The average difference between the isotopic values with and without lipid extraction do not exceed the instrument error of 0.2 ‰ for either δ^{13} C and δ^{15} N values. 174

Species	Sample ID	Year	Sample Type	δ ¹³ C (‰)	LE δ ¹³ C (‰)	δ ¹⁵ N (‰)	LE δ ¹⁵ N (‰)	$\delta^{13}C - LE \\ \delta^{13}C \\ (\%)$	$\delta^{15}N - LE \\ \delta^{15}N \\ (\%)$
Crabeater	C03	2008	WB	-26.3	-26.5	8.2	8.0	0.2	0.2
	C06	2008	WB	-26.5	-26.6	8.6	8.5	0.1	0.1
	C07	2008	WB	-26.2	-26.3	8.5	8.3	0.1	0.2
	C20	2008	WB	-26.0	-26.0	8.1	7.9	0.0	0.2
	C46	2008	WB	-26.0	-26.0	8.2	8.1	0.0	0.1
	C52	2008	WB	-25.5	-25.7	7.3	7.1	0.2	0.2
	C153	2010	WB	-25.9	-25.9	7.3	7.2	0.0	0.1
	C154	2010	WB	-26.1	-26.1	7.0	6.9	0.0	0.1
	C176	2010	WB	-26.6	-26.7	7.2	7.0	0.1	0.2
Weddell	W12	2008	WB	-25.1	-25.1	12.3	12.1	0.0	0.2
	W15	2008	WB	-25.3	-25.3	11.4	11.2	0.0	0.2
	W117	2010	WB	-24.9	-24.9	12.0	11.8	0.0	0.2
	W216	2010	WB	-25.1	-25.2	13.2	13.1	0.1	0.1
	W223	2010	WB	-24.9	-24.9	13.9	13.8	0.0	0.1
Ross	R01	2008	WB	-23.2	-23.2	8.5	8.4	0.0	0.1
	R101	2010	WB	-23.9	-23.9	9.6	9.4	0.0	0.2
	R102	2010	WB	-23.6	-23.7	9.0	8.8	0.1	0.2
	R103	2010	WB	-24.0	-24.0	9.0	8.8	0.0	0.2
	R108	2010	WB	-24.6	-24.7	10.0	9.8	0.1	0.2
	R112	2010	WB	-23.8	-23.8	9.7	9.6	0.0	0.1
	R114	2010	WB	-23.7	-23.7	8.6	8.5	0.0	0.1

Table S3. Bulk δ^{13} C and δ^{15} N values of crabeater, Weddell, and Ross seals for multiple tissue types. These isotopic values are used to calculate the isotopic offsets between different tissue types, see Table S4 below. Abbreviations are as in Tables S1. 176 177 178

			WB		Clot		RBCs		Hair	
Species	ID	Year	δ ¹³ C	δ ¹⁵ N	δ ¹³ C	δ ¹⁵ N	δ ¹³ C	δ ¹⁵ N	δ ¹³ C	$\delta^{15}N$
-			(‰)	(‰)	(‰)	(‰)	(‰)	(‰)	(‰)	(‰)
Crabeater	G14	Su			-26.1	7.3			-23.7	6.4
	C14	2010/11 Su								
	C143	2010/11	-26.1	8.0					-24.5	7.5
	C157	Su 2010/11	-25.8	8.4					-24.6	8.7
	C158	Su 2010/11	-25.9	8.2					-24.4	8.0
	C173	Su 2010/11	-25.9	6.9					-24.2	6.6
	C174	Su 2010/11	-26.1	7.0	-26.1	6.8			-24.4	7.5
	C176	Su 2010/11	-26.6	7.2			-26.8	6.9		
	C02	Su 2010/11			-26.3	6.9			-24.7	7.1
	C20	Su 2010/11					-26.1	7.4	-25.0	7.0
		Su					-26.3	8.1	-24 9	73
	C21	2010/11					20.5	0.1	21.9	1.5
	C03	2010/11			-26.4	7.0			-24.2	7.0
Weddell	WS12 -22	Sp 2012	-24.7	12.4			-24.4	12.1		
	WS12 -23	Sp 2012	-25.9	12.2			-25.3	11.7		
	WS12 -24	Sp 2012	-25.6	12.1			-25.5	12.1		
	WS12 -25	Sp 2012	-25.7	12.9			-25.0	12.0		
	WS12 -26	Sp 2012	-24.8	12.7			-24.7	12.5		
	W116	Su 2010/11	-24.5	12.6					-23.2	12.9
	W117	Su 2010/11	-24.9	12.0					-23.3	12.7
	W118	Su 2010/11	-25.1	12.0	-24.9	11.9				
	W130	Su 2010/11	-24.4	13.1			-24.4	13.0		
	W133	Su 2010/11	-24.4	12.5					-23.0	13.1
	W136	Su 2010/11	-25.2	11.9	-25.3	12.0				
	W137	Su 2010/11	-25.1	12.0			-25.1	11.9	-23.6	12.8
	W176	Su 2010/11	-24.3	13.0					-22.9	13.0
	W208	Su 2010/11	-25.8	12.6			-25.9	12.4		

	W216	Su 2010/11	-25.1	13.2	-25.0	13.2			
	W219	Su 2010/11	-25.6	11.9	-25.4	11.9			
	W220	Su 2010/11	-25.0	12.6	-25.0	12.4			
	W04	Su 2010/11			-24.8	12.2		-23.5	12.6
	W06	Su 2010/11			-24.7	12.2		-23.5	12.2
Ross	R101	Su 2010/11	-23.9	9.6				-22.6	10.3
	R103	Su 2010/11	-24.0	9.0				-22.8	11.0
	R105	Su 2010/11	-23.6	9.2				-22.4	10.1
	R107	Su 2010/11	-23.6	8.8				-22.4	10.5
	R108	Su 2010/11	-24.6	10.0				-23.0	10.8

Table S4. Calculated isotopic offsets between different tissue types for crabeater, Weddell, and Ross

183 184 185 186 seals. Abbreviations are as in Tables S1. If a calculated mean offset is ≤ 0.2 ‰, then the offset between the two tissue types is considered insignificant (less than instrumental error as indicated by the quality

control standard)

		Sample	δ ¹³ C	δ ¹⁵ N	Mean δ ¹³ C	Mean δ ¹⁵ N	
Species	Offset Type	ĪD	Offset (‰)	Offset (‰)	Offset (‰)	Offset (‰)	
Crabeater	WB – Clot	C174	0.0	0.2	0.0	0.2	
	WB – RBCs	C176	0.2	0.2	0.2	0.2	
	WB – Hair	C143	-1.6	0.4	-1.6	0.0	
		C157	-1.2	-0.3			
		C158	-1.5	0.2			
		C173	-1.7	0.3			
		C174	-1.7	-0.5			
	Clot – Hair	C14	-2.4	0.9	-2.0	0.0	
		C174	-1.7	-0.7			
		C2	-1.5	-0.2			
		C3	-2.1	0.0			
	RBCs – Hair	C20	-1.1	0.4	-1.3	0.6	
		C21	-1.5	0.8			
Weddell	WB – Clot	W118	-0.2	0.1	-0.1	0.1	
		W136	0.1	-0.1			
		W216	-0.1	0.0			
		W219	-0.2	0.0			
		W220	0.0	0.2			
	WB-RBCs	WS12-22	-0.2	0.3	-0.2	0.3	
		WS12-23	-0.6	0.4			
		WS12-24	-0.2	0.1			
		WS12-25	-0.7	0.9			
		WS12-26	-0.1	0.2			
		W130	0.1	0.1			
		W137	0.0	0.0			
		W208	0.0	0.2			
	WB – Hair	W116	-1.3	-0.3	-1.4	-0.5	
		W117	-1.5	-0.7			
		W133	-1.4	-0.6			
		W137	-1.5	-0.9			
		W176	-1.4	0.0			
	Clot – Hair	W4	-1.3	-0.4	-1.2	-0.2	
		W6	-1.2	0.0			
	RBCs – Hair	W137	-1.5	-0.9	-1.5	-0.9	

Ro	SS	WB – Hair	R101	-1.3	-0.7	-1.3	-1.2
			R103	-1.2	-2.0		
			R105	-1.2	-0.9		
			R107	-1.2	-1.6		
			R108	-1.6	-0.8		

192	Table S5. Bulk δ^1	${}^{3}C$ and $\delta^{15}N$ values of	of Weddell seals	for multiple blood	sample types. These
-----	---------------------------	--	------------------	--------------------	---------------------

isotopic values are used to calculate the isotopic offsets between these different sample types, see Table S6 below. Abbreviations are as in Tables S1.

		W	/ B	Pla	sma	Ser	um	RB	BCs
ID	Year	δ ¹³ C	δ ¹⁵ N						
		(‰)	(‰)	(‰)	(‰)	(‰)	(‰)	(‰)	(‰)
LW15-01	Sp 2015	-25.8	12.1	-26.4	12.3	-26.2	12.7		
LW15-02	Sp 2015	-25.2	12.1	-25.6	13.0	-25.3	13.4		
LW15-03	Sp 2015	-25.3	12.1	-25.7	12.7	-25.5	13.1		
LW15-11	Sp 2015	-25.3	12.2	-26.2	12.8	-25.8	13.3		
LW15-12	Sp 2015	-25.2	11.9	-25.8	12.8	-25.5	13.3		
WS12-22	Sp 2012	-24.7	12.4					-24.4	12.1
WS12-23	Sp 2012	-25.9	12.2					-25.3	11.7
WS12-24	Sp 2012	-25.6	12.1					-25.5	12.1
WS12-25	Sp 2012	-25.7	12.9					-25.0	12.0
WS12-26	Sp 2012	-24.8	12.7					-24.7	12.5
W130	Su 2010/11	-24.4	13.1					-24.4	13.0
W137	Su 2010/11	-25.1	12.0					-25.1	11.9
W208	Su 2010/11	-25.8	12.6					-25.9	12.4

193 194
197 Table S6. Calculated isotopic offsets between different blood sample types for Weddell seals.

198 199 200 Abbreviations are as in Tables S1. If a calculated mean offset is ≤ 0.2 ‰, then the offset between the two sample types is considered insignificant (less than instrumental error as indicated by the quality

control standard).

Offeret Trime	Samula ID	δ ¹³ C Offset	δ ¹⁵ N Offset	Mean δ ¹³ C	Mean δ ¹⁵ N
Offset Type	Sample ID	(‰)	(‰)	Offset (‰)	Offset (‰)
Plasma – Serum	LW15-01	-0.2	-0.4	-0.3	-0.4
	LW15-02	-0.3	-0.4		
	LW15-03	-0.2	-0.4		
	LW15-11	-0.3	-0.5		
	LW15-12	-0.3	-0.5		
WB – Serum	LW15-01	0.4	-0.6	0.3	-1.1
	LW15-02	0.2	-1.3		
	LW15-03	0.1	-1.0		
	LW15-11	0.5	-1.2		
	LW15-12	0.3	-1.4		
WB – Plasma	LW15-01	0.5	-0.2	0.6	-0.7
	LW15-02	0.4	-0.9		
	LW15-03	0.4	-0.6		
	LW15-11	0.9	-0.7		
	LW15-12	0.6	-0.9		
WB – RBCs	WS12-22	-0.3	0.3	-0.2	0.3
	WS12-23	-0.6	0.5		
	WS12-24	-0.1	0.0		
	WS12-25	-0.7	0.9		
	WS12-26	-0.1	0.2		
	W130	0.1	0.1		
	W137	0.0	0.0		
	W208	0.0	0.2		

Table S7. Bulk δ^{13} C and δ^{15} N values of crabeater, Weddell, and Ross seals. Note, bulk δ^{13} C and δ^{15} N values are 206

207 reported for the original measurement (Orig.) and with a correction to whole blood (Corr.) if the sample is a tissue 208 type with a significant isotopic offset from whole blood. Isotopic offset between whole blood and the given sample

209 type are reported in Tables S4 and S6, above. Atomic C:N ratios are from the original measurements. Samples with

210 an asterisk and two asterisks are from Hückstädt et al. (2012a) and Goetz et al. (2017), correspondingly; all other

211 data are from this study. Whisker data are from the segment representing the most recent time period, which best

212 213 overlaps with the collection location and integrated time of blood tissues, except data from Hückstädt et al. (2012a)

are an average for all segments. Abbreviations are as in Table S1. Additionally, "WAP," "RS," and "AM" 214 abbreviate "West Antarctic Peninsula," "Ross Sea," and "Amundsen Sea," respectively.

Species	Sample ID	Season	Region	Sample Type	$\delta^{13}C$	Orig. δ ¹⁵ N	$\delta^{13}C$	$\delta^{15}N$	Atomic C:N
Crabaatar	C02	Su 2010/11	AM	Clat	26.3	6.0	(/00)	(/00)	2.8
Clabcater	C02 C03	Su 2010/11 Su 2008/09		WB	-26.3	8.2			3.0
	C03	Su 2000/07	AM	Clot	-26.5	7.0	_	_	3.8
	C04	Su 2010/11	AM	WB	-26.5	83	_	_	2.0 4.0
	C04	Su 2008/09	AM	WB	-26.5	8.6	_	_	3.9
	C07	Su 2008/09	AM	WB	-26.2	8.5	_	_	3.9
	C07	Su 2010/11	AM	Hair	-24.1	7.0	-257	_	3.4
	C10	Su 2010/11	AM	Hair	-23.5	6.8	-25.1	_	3.4
	C11	Su 2010/11	AM	Hair	-23.5	6.3	-25.1	_	3.4
	C14	Su 2010/11	AM	Clot	-26.1	7.4	_	_	3.9
	C15	Su 2010/11	AM	WB	-26.2	7.2	_	_	3.9
	C20	Su 2008/09	AM	WB	-26.0	8.1	_	_	3.9
	C20	Su 2010/11	AM	RBCs	-26.1	7.4	_	_	3.8
	C21	Su 2008/09	AM	Clot	-26.4	8.3	_	_	3.9
	C21	Su 2010/11	AM	RBCs	-26.3	8.1	_	_	3.9
	C22	Su 2008/09	AM	Clot	-26.5	8.4	_	_	3.9
	C32	Su 2008/09	AM	WB	-26.1	7.6	_	_	3.9
	C33	Su 2008/09	AM	WB	-26.0	7.8	_	_	3.8
	C43	Su 2008/09	AM	WB	-26.2	7.4	_	_	3.9
	C44	Su 2008/09	AM	WB	-26.3	7.5	_	-	3.9
	C45	Su 2008/09	AM	WB	-26.6	7.4	_	-	3.9
	C46	Su 2008/09	AM	WB	-26.0	8.2	-	-	3.8
	C47	Su 2008/09	RS	WB	-25.6	7.5	-	-	3.9
	C48	Su 2008/09	RS	WB	-25.8	7.1	-	-	4.0
	C50	Su 2008/09	RS	WB	-26.1	8.4	-	-	4.0
	C51	Su 2008/09	RS	WB	-26.1	7.3	-	-	3.8
	C52	Su 2008/09	RS	WB	-25.5	7.3	-	-	3.8
	C143	Su 2010/11	AM	WB	-26.1	8.0	-	-	3.9
	C144	Su 2010/11	AM	WB	-26.1	7.9	-	-	3.9
	C153	Su 2010/11	AM	WB	-25.9	7.3	-	-	3.9
	C154	Su 2010/11	AM	WB	-26.1	7.0	-	-	3.9
	C155	Su 2010/11	AM	Hair	-24.8	7.7	-26.4	-	3.4
	C156	Su 2010/11	AM	WB	-26.0	7.9	-	-	3.9
	C157	Su 2010/11	AM	WB	-25.8	8.4	-	-	4.0
	C158	Su 2010/11	AM	WB	-25.9	8.2	-	-	4.0
	C173	Su 2010/11	AM	WB	-25.9	6.9	-	-	3.9
	C174	Su 2010/11	AM	WB	-26.1	7.0	-	-	3.9
	C175	Su 2010/11	AM	Hair	-23.2	6.7	-24.8	-	3.4
	C176	Su 2010/11	AM	WB	-26.6	7.2	-	-	3.9
	C177	Su 2010/11	RS	WB	-26.2	7.7	-	-	3.9
	Cr-1	Su 2009/10	RS	Hair	-25.0	7.7	-26.6	-	3.4
	Cr-CR	Su 2009/10	RS	Hair	-24.6	7.6	-26.2	-	3.4
	Cr-2	Su 2009/10	RS	Hair	-25.5	7.3	-27.1	-	3.4
	CS11-01	Su 2010/11	RS	WB	-25.5	11.9	-	-	4.0

	G001*	F 2001	WAP	Whisker	-19.8	7.1	-21.4	_	3.4
	G003*	F 2001	WAP	Whisker	-22.1	53	-23 7	_	3.5
	G004*	F 2001	WAP	Whisker	-21.8	67	-23.4	_	3.5
	G005*	F 2001	WAP	Whisker	-21.0	6.6	-23.5	_	3.5
	G006*	F 2001	WAP	Whisker	_24.1	6.2	-25.7	_	3.5
	G000 G007*	F 2001	WΔP	Whisker	-24.1	6.4	-23.7	_	3.4
	G007 G008*	F 2001	WAP	Whisker	22.0	6.8	23.4		3.4
	G008 G009*	W 2001	WAD	Whisker	-22.0	6.2	-25.0	_	3.4
	C010*	W 2001	WAD	Whickor	-23.4	6.5	-23.0	_	3.4
	C012*	W 2001	WAF	Whicker	-22.5	0.5	-24.1	_	5.4 2.5
	G012*	W 2001	WAP	Whister	-21.3	0.8	-25.1	_	3.3 2.5
	G013*	W 2001	WAP	whisker	-21.5	0./	-22.9	_	3.5
	G014*	W 2001	WAP	whisker	-21.0	7.0	-23.2	_	3.4
	G015*	W 2001	WAP	whisker	-22.4	7.3	-24.0	—	3.5
	G016*	W 2001	WAP	Whisker	-21.1	5.9	-22.7	-	3.5
	G017*	F 2002	WAP	Whisker	-21.8	6.8	-23.4	-	3.3
	G018*	F 2002	WAP	Whisker	-24.9	6.5	-26.5	-	3.3
	G019*	F 2002	WAP	Whisker	-24.7	6.6	-26.3	—	3.3
	G020*	F 2002	WAP	Whisker	-24.5	6.6	-26.1	-	3.3
	G021*	F 2002	WAP	Whisker	-22.3	6.7	-23.9	-	3.4
	G022*	F 2002	WAP	Whisker	-20.9	7.9	-22.5	-	3.4
	G023*	F 2002	WAP	Whisker	-24.6	6.4	-26.2	-	3.3
	G024*	F 2002	WAP	Whisker	-21.8	7.2	-23.4	-	3.3
	G026*	F 2002	WAP	Whisker	-23.6	6.5	-25.2	-	3.3
	G027*	F 2002	WAP	Whisker	-22.3	6.9	-23.9	_	3.3
	G028*	F 2002	WAP	Whisker	-22.2	7.1	-23.8	_	3.3
	G029*	F 2002	WAP	Whisker	-21.6	7.2	-23.2	-	3.3
	G030*	F 2002	WAP	Whisker	-22.1	6.9	-23.7	_	3.3
	G031*	F 2002	WAP	Whisker	-21.2	7.5	-22.8	_	3.3
	G032*	F 2002	WAP	Whisker	-23.2	7.0	-24.8	_	3.3
	G033*	W 2002	WAP	Whisker	-21.1	7.5	-22.7	_	3.3
	G034*	W 2002	WAP	Whisker	-21.8	6.7	-23.4	_	3.3
	G035*	W 2002	WAP	Whisker	-21.6	7.0	-23.2	_	3.3
	G036*	W 2002	WAP	Whisker	-21.5	7.3	-23.1	_	3.4
	G038*	W 2002	WAP	Whisker	-22.0	6.9	-23.6	_	3.4
	G039*	W 2002	WAP	Whisker	-22.9	73	-24.5	_	3 4
	G040*	W 2002	WAP	Whisker	-23.7	6.5	-25.3	_	3.4
	G041*	W 2002	WAP	Whisker	-22.9	67	-24 5	_	3.4
	G042*	W 2002	WAP	Whisker	-21.6	69	-23.2	_	3.5
	G043*	W 2002	WAP	Whisker	_22.8	74	-24.4	_	3.4
	G044*	W 2002	WAP	Whisker	-21.8	7.1	-23.4	_	3.5
	G045*	W 2002	WAD	Whisker	221.0	7.1	-23.4		3.1
	G045 G046*	W 2002	WAP	Whisker	21.7	7.0	23.0		3.4
	G040 G047*	W 2002	WAD	Whisker	21.7	7.0	23.5		3.5
	G102*	W 2002 E 2007	WAD	Whisker	-21.5	7.1 5.2	-23.1	_	5.5 po
	G102*	F 2007	WAD	Whicker	-23.0	5.5	-23.4	_	11a 2 4
	C104*	F 2007	WAF	Whicker	-22.7	0.9	-24.5	_	5.4
	G105*	F 2007	WAP	whisker	-22.3	/.l	-23.9	_	na 2.5
	G106*	F 2007	WAP	w hisker	-21.9	/.1	-23.5	—	3.5
	G10/*	F 2007	WAP	w nisker	-23.5	0.0	-24.9	-	na 2 4
	G108*	F 2007	WAP	W hisker	-21.5	/.5	-23.1	-	3.4
	G110*	F 2007	WAP	Whisker	-23.1	7.9	-24.7	-	na
	GH2*	F 2007	WAP	Whisker	-24.0	5.4	-25.6	-	3.4
	G113*	F 2007	WAP	Whisker	-23.3	5.8	-24.9	-	3.5
*** ***	W02	Su 2008/09	AM	WB	-26.3	8.5	-	-	4.0
Weddell	W01	Su 2010/11	AM	Hair	-23.2	13.3	-24.6	12.8	3.5
	W02	Su 2010/11	AM	Hair	-23.2	12.6	-24.6	12.1	3.5
	W04	Su 2010/11	AM	Clot	-24.8	12.2	-	—	3.9

	W06	Su 2010/11	AM	Clot	-24 7	12.2		_	39
	W10	Su 2010/11 Su 2008/00	DS	WP	24.7	11.2			2.0
	W10 W11	Su 2008/09		WD	-24.0	11.0	_	—	3.9
	W11	Su 2008/09	KS DC	WB	-23.2	11.0	_	_	4.0
	W12	Su 2008/09	KS	WB	-25.1	12.3	_	—	3.9
	W14	Su 2008/09	RS	WB	-24.9	12.1	-	—	3.9
	W15	Su 2008/09	RS	WB	-25.3	11.4	-	-	3.9
	W17	Su 2008/09	RS	WB	-25.1	11.9	-	—	4.0
	W19	Su 2008/09	RS	WB	-25.2	12.0	-	-	3.9
	W103	Su 2010/11	AM	WB	-25.7	10.0	-	—	3.9
	W112	Su 2010/11	AM	Hair	-23.2	13.3	-24.6	12.8	3.5
	W113	Su 2010/11	AM	WB	-24.6	12.6	_	_	4.0
	W116	Su 2010/11	AM	WB	-24.5	12.6	-	-	3.9
	W117	Su 2010/11	AM	WB	-24.9	12.0	_	_	4.0
	W118	Su 2010/11	AM	WB	-25.1	12.0	_	_	4.0
	W130	Su 2010/11	AM	WB	-24.4	13.1	_	_	3.9
	W133	Su 2010/11	АМ	WB	-24.4	12.5	_	_	3.9
	W136	Su 2010/11	АМ	WB	-25.2	11.9	_	_	4.0
	W137	Su 2010/11	AM	WB	-25.1	12.0	_	_	39
	W155	Su 2010/11	AM	WB	-24.3	13.2	_	_	4.0
	W155	Su 2010/11	AM	WB	-25.0	13.0	_	_	4.0
	W137 W174	Su 2010/11	AM	WB	-23.0	11.8	_	_	3.0
	W175	Su 2010/11		WB	-24.0	13.1			1.0
	W175 W176	Su 2010/11 Su 2010/11		WD	-24.2	12.0	_	_	4.0 2.0
	W170 W177	Su 2010/11 Su 2010/11		WD	-24.4	13.0	_	_	3.9
	W1//	Su 2010/11		WD	-24.3	15.0	-	-	5.9
	W182	Su 2010/11		Hair	-24.1	10.5	-25.5	9.8	3.5
	W185	Su 2010/11	KS DS	WB	-25.8	11.8	-	-	3.9
	W186	Su 2010/11	KS DC	WB	-26.2	12.0	-	-	3.9
	W208	Su 2010/11	RS	WB	-25.8	12.6	-	-	3.9
	W209	Su 2010/11	RS	WB	-26.0	12.7	-	-	3.9
	W214	Su 2010/11	RS	WB	-26.3	11.8	-	-	4.0
	W216	Su 2010/11	RS	WB	-25.1	13.2	-	-	4.0
	W219	Su 2010/11	RS	WB	-25.6	11.9	-	-	4.0
	W220	Su 2010/11	RS	WB	-25.0	12.6	-	-	4.0
	W222	Su 2010/11	RS	WB	-25.2	12.2	-	_	3.9
	W223	Su 2010/11	RS	WB	-24.9	13.9	-	-	4.1
	WS10-11	Su 2009/10	RS	RBC	-25.0	12.3	_	12.6	3.9
	WS10-12	Su 2009/10	RS	RBC	-25.0	11.7	-	12.0	3.8
	WS10-13	Su 2009/10	RS	RBC	-24.8	12.0	_	12.3	3.9
	WS10-17	Su 2009/10	RS	RBC	-25.5	11.5	_	11.8	4.0
	WS10-18	Su 2009/10	RS	RBC	-25.3	11.3	_	11.6	3.8
	WS11-11	Su 2010/11	RS	WB	-25.7	11.6	_	_	4.0
	WS11-12	Su 2010/11	RS	WB	-25.5	11.7	_	_	3.9
	WS11-13	Su 2010/11	RS	WB	-24.9	12.4	_	_	3.9
	WS11-14	Su 2010/11	RS	WB	-24.6	12.4	_	_	3.9
	WS11-15	Su 2010/11	RS	WB	-25.7	11.8	_	_	4.0
	WS12-11	Su 2011/12	RS	RBC	-25.0	12.1	_	12.4	3.9
	WS12-12	Su 2011/12 Su 2011/12	RS	RBC	-25.0	11.0		12.1	3.9
	WS12-12 WS12-13	Su 2011/12 Su 2011/12	RS	RBC	-25.4	12.1		12.2	3.9
	WS12-13	Su 2011/12 Su 2011/12	RS	RBC	-25.5	12.1		12.4	3.9
	WS12-14	Su 2011/12 Su 2011/12	RS	RDC	-25.5 25 A	11.0	_	12.5	3.0
	WS12-13	Su 2011/12 Sp 2012	NS DS		-23.4	11.0	_	12.1	5.9 1 1
	WS12-22	Sp 2012	NO DC		-24.7	12.4	_	_	4.1
	WS12-23	Sp 2012	KS DS	WB	-23.9	12.2	-	-	4.5
	W 512-24	Sp 2012	KS DC	WD	-23.0	12.1	-	-	4.1
	w 512-25	Sp 2012	KS DC	WB	-25.7	12.9	-	-	4.4
	WS12-26	Sp 2012	KS	WB	-24.8	12.7	-	-	4.0
	G103	F 2007	WAP	Serum	-22.4	13.1	-22.1	12.0	4.3

1	G111	F 2007	WAP	Plasma	-22.8	12.3	-22.2	11.6	4.2
	LW11-03	Su 2010/11	RS	WB	-24.3	12.2	-	_	3.9
	LW11-05	Su 2010/11	RS	WB	-25.7	12.2	-	_	3.9
	LW11-06	Su 2010/11	RS	WB	-25.8	12.0	-	-	3.9
	LW11-07	Su 2010/11	RS	WB	-25.6	12.2	-	-	3.9
	LW11-08	Su 2010/11	RS	WB	-24.9	12.3	-	-	3.9
	LW11-09	Su 2010/11	RS	WB	-25.0	12.3	-	-	3.9
	LW11-10	Su 2010/11	RS	WB	-25.7	11.9	-	-	3.9
	LW11-11	Su 2010/11	RS	WB	-24.1	13.1	-	-	3.9
	LW11-12	Su 2010/11	RS	WB	-25.8	12.0	-	-	3.9
	LW11-13	Su 2010/11	RS	WB	-25.3	12.1	-	-	3.9
	LW11-14	Su 2010/11	RS	WB	-25.5	12.1	-	-	3.9
	LW11-15	Su 2010/11	KS DC	WB WD	-25.8	13.0	-	-	4.1
	LW15-01	Sp 2015 Sp 2015	KS DS	WB WD	-25.8	12.1	_	_	4.2
	LW15-02	Sp 2015	KS DS	W D W D	-23.2	12.1	_	_	3.9 2.0
	LW15-05	Sp 2015 Sp 2015	NS DS	W D W D	-25.5	12.1	_	_	3.9
	LW15-04	Sp 2015 Sp 2015	RS	WB	-25.5	12.0	_	_	3.9
	LW15-06	Sp 2015	RS	WB	-25.5	12.2			<i>J.9</i> <i>A</i> 0
	LW15-07	Sp 2015	RS	WB	-25.2	12.2	_	_	4.0
	LW15-08	Sp 2015	RS	WB	-25.3	11.9	_	_	39
	LW15-09	Sp 2015	RS	WB	-25.3	12.0	_	_	39
	LW15-10	Sp 2015	RS	WB	-25.1	12.0	_	_	39
	LW15-11	Sp 2015	RS	WB	-25.3	12.2	_	_	3.9
	LW15-12	Sp 2015	RS	WB	-25.2	11.9	_	_	4.0
	W006	Su 2009/10	WAP	Whisker	-22.6	10.9	-24.0	10.4	3.4
	W013	Su 2009/10	WAP	Whisker	-21.9	12.1	-23.3	11.6	3.4
	WS10-01**	Su 2009/10	RS	Whisker	-23.3	12.9	-24.7	12.4	na
	WS10-02**	Su 2009/10	RS	Whisker	-22.8	14.5	-24.2	14.0	na
	WS10-03**	Su 2009/10	RS	Whisker	-23.5	13.0	-24.9	12.5	na
	WS10-04**	Su 2009/10	RS	Whisker	-23.0	12.5	-24.4	12.0	na
	WS10-05**	Su 2009/10	RS	Whisker	-22.9	12.4	-24.3	11.9	na
	WS10-06**	Su 2009/10	RS	Whisker	-24.6	13.3	-26.0	12.8	na
	WS10-07**	Su 2009/10	RS	Whisker	_23.3	12.5	-24.7	12.0	na
	WS10-19**	Su 2009/10	RS	Whisker	23.5	12.0	25.2	12.5	na
	WS10-17	Su 2009/10	DS	Whicker	-23.0	12.5	-25.2	12.0	na
	WS10-20**	Su 2009/10 Su 2000/10	NS DS	Whicker	-25.0	12.9	-23.2	12.4	na
	WS10-21**	Su 2009/10 Su 2000/10	NS DC	Whistor	-22.9	12.3	-24.5	12.0	па
	WS10-22**	Su 2009/10	KS DC	w niskei	-23.1	12.4	-24.5	11.9	na
	WS11-03**	Su 2010/11	KS DC	Whisker	-23.4	12.6	-24.8	12.1	na
	WS11-04**	Su 2010/11	RS	Whisker	-23.5	12.8	-24.9	12.3	na
	WS11-05**	Su 2010/11	RS	Whisker	-23.3	13.5	-24.7	13.0	na
	WS11-06**	Su 2010/11	RS	Whisker	-23.5	14.0	-24.9	13.5	na
	WS11-08**	Su 2010/11	RS	Whisker	-23.3	13.8	-24.7	13.3	na
	WS11-09**	Su 2010/11	RS	Whisker	-24.7	14.2	-26.1	13.7	na
	WS11-17**	Su 2010/11	RS	Whisker	-23.4	12.5	-24.8	12.0	na
	WS11-18**	Su 2010/11	RS	Whisker	-23.6	12.9	-25.0	12.4	na
	WS11-19**	Su 2010/11	RS	Whisker	-23.5	13.4	-24.9	12.9	na
	WS11-21**	Su 2010/11	RS	Whisker	-24.1	12.5	-25.5	12.0	na
	WS11-37**	Su 2011/12	RS	Whisker	-23.0	12.7	-24.4	12.2	na
	WS11-38**	Su 2011/12	RS	Whisker	-23.1	13.5	-24.5	13.0	na
	WS11-39**	Su 2011/12	RS	Whisker	-23 5	12.6	-24 9	12.1	na
	WS11-40**	Su 2011/12	RS	Whisker	-23 7	12.8	-25.1	12.3	na
	WS11-41**	Su 2011/12	RS	Whicker	_23.7	13.6	_24.8	13.1	na
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5u 2011/12	10	W HISKUI	-29.4	15.0	-24.0	13.1	na

	WS12-01**	Su 2011/12	RS	Whisker	-24.1	12.8	-25.5	12.3	na
	WS12-02**	Su 2011/12	RS	Whisker	-23.7	12.6	-25.1	12.1	na
	WS12-04**	Su 2011/12	RS	Whisker	-23.3	12.7	-24.7	12.2	na
	WS12-05**	Su 2011/12	RS	Whisker	-23.2	13.2	-24.6	12.7	na
	WS12-06**	Su 2011/12	RS	Whisker	-22.7	13.4	-24.1	12.9	na
	WS12-07**	Su 2011/12	RS	Whisker	-23.2	13.8	-24.6	13.3	na
	WS12-08**	Su 2011/12	RS	Whisker	-22.6	13.7	-24.0	13.2	na
	WS12-09**	Su 2011/12	RS	Whisker	-22.8	13.6	-24.2	13.1	na
	WS12-10**	Su 2011/12	RS	Whisker	-23.6	13.3	-25.0	12.8	na
	WS12-16**	Su 2011/12	RS	Whisker	-24.2	12.7	-25.6	12.2	na
	WS12-17**	Su 2011/12	RS	Whisker	-23.8	12.4	-25.2	11.9	na
	WS12-19**	Su 2011/12	RS	Whisker	-23.4	13.6	-24.8	13.1	na
	WS12-20**	Su 2011/12	RS	Whisker	-23.4	13.2	-24.8	12.7	na
Ross	R01	Su 2008/09	AM	WB	-23.2	8.5		-	3.9
	R101	Su 2010/11	AM	WB	-23.9	9.6	—	-	3.9
	R102	Su 2010/11	AM	WB	-23.6	9.0	_	-	4.0
	R103	Su 2010/11	AM	WB	-24.0	9.0	_	-	4.0
	R104	Su 2010/11	AM	WB	-23.7	9.2	_	-	4.0
	R105	Su 2010/11	AM	WB	-23.6	9.2	-	-	4.0
	R106	Su 2010/11	AM	WB	-24.1	8.8	_	-	3.9
	R107	Su 2010/11	AM	WB	-23.6	8.8	_	-	3.9
	R108	Su 2010/11	AM	WB	-24.6	10.0	-	-	4.0
	R109	Su 2010/11	AM	WB	-23.9	9.0	-	-	4.0
	R110	Su 2010/11	AM	Hair	-23.0	10.0	-24.3	8.8	3.5
	R111	Su 2010/11	AM	WB	-23.6	8.8	—	-	4.0
	R112	Su 2010/11	AM	WB	-23.8	9.7	—	-	3.9
	R113	Su 2010/11	AM	WB	-23.7	9.0	—	-	4.0
	R114	Su 2010/11	RS	WB	-23.8	8.6	_	-	4.0

Table S8. Amino acid δ^{15} N values for crabeater, Ross, and Weddell seals. Values are reported as the

217 218 219 mean \pm one standard deviation for the injections on the GC/C/IRMS. For crabeater seals, whole blood (C06, C44, C177) and plasma (G112, G105, and G110) samples were analyzed. All Ross seal samples analyzed for amino acid δ^{15} N values were whole blood. For Weddell seals, whole blood

220 221 (W185, W220, and WS11-11), plasma (G111), and sample from the first segment nearest the

<i>LL</i> I	
222	

(•, ••••), p (-),		
whisker base	, 0.0-0.5 cm	, (W006 and W013) were used for	CSI-AA. Abbreviation	n: na, not available

Species	Sample ID	Region	Amino Acid	Injections	$\delta^{13}N(\%)$
Crabeater	C06	AM	Alanine	3	13.7 ± 0.3
	C06	AM	Glycine	3	8.5 ± 0.1
	C06	AM	Threonine	3	-21.9 ± 0.6
	C06	AM	Serine	3	7.0 ± 0.5
	C06	AM	Valine	3	14.9 ± 0.3
	C06	AM	Leucine	3	13.9 ± 0.2
	C06	AM	Isoleucine	3	12.8 ± 0.2
	C06	AM	Proline	3	15.7 ± 0.4
	C06	AM	Aspartic	3	11.0 ± 0.3
	C06	AM	Glutamic acid	3	15.1 ± 0.4
	C06	AM	Phenylalanine	3	6.8 ± 0.3
	C06	AM	Lysine	3	5.5 ± 0.6
	G112	WAP	Alanine	3	12.0 ± 0.7
	G112	WAP	Glycine	3	0.6 ± 0.1
	G112	WAP	Threonine	3	-20.7 ± 0.1
	G112	WAP	Serine	3	1.9 ± 0.2
	G112	WAP	Valine	3	13.5 ± 0.2
	G112	WAP	Leucine	3	11.8 ± 0.6
	G112	WAP	Isoleucine	3	11.6 ± 1.0
	G112	WAP	Proline	3	15.5 ± 0.6
	G112	WAP	Aspartic	3	9.9 ± 0.2
	G112	WAP	Glutamic acid	3	15.0 ± 0.4
	G112	WAP	Phenylalanine	3	4.3 ± 0.1
	G112	WAP	Lysine	2	4.5 ± 0.2
	C44	AM	Alanine	3	14.3 ± 0.4
	C44	AM	Glycine	3	4.7 ± 0.4
	C44	AM	Threonine	3	-25.4 ± 0.4
	C44	AM	Serine	3	4.2 ± 0.2
	C44	AM	Valine	3	15.1 ± 0.5
	C44	AM	Leucine	3	13.4 ± 0.5
	C44	AM	Isoleucine	3	12.2 ± 0.1
	C44	AM	Proline	3	14.7 ± 0.3
	C44	AM	Aspartic	3	9.3 ± 0.2
	C44	AM	Glutamic acid	3	15.0 ± 0.2
	C44	AM	Phenylalanine	3	5.8 ± 0.2
	C44	AM	Lysine	3	4.9 ± 0.3
	G105	WAP	Alanine	3	13.3 ± 0.4
	G105	WAP	Glycine	3	1.6 ± 0.3
	G105	WAP	Threonine	3	-19.6 ± 0.4
	G105	WAP	Serine	3	2.5 ± 0.3
	G105	WAP	Valine	3	14.4 ± 0.5
	G105	WAP	Leucine	3	12.7 ± 0.1
	G105	WAP	Isoleucine	3	11.5 ± 0.6
	G105	WAP	Proline	3	16.5 ± 0.5
	G105	WAP	Aspartic	3	10.4 ± 0.0
	G105	WAP	Glutamic acid	3	15.2 ± 0.3
	G105	WAP	Phenylalanine	3	4.7 ± 0.2
	G105	WAP	Lysine	3	5.3 ± 0.5
	C177	RS	Alanine	4	14.6 ± 0.4

	C177	RS	Glycine	4	39 + 04
	C177		Thraanina	4	3.7 ± 0.4
	C1//	K5 DC	Threonine	4	-20.1 ± 0.8
	C1//	KS	Serine	4	5.2 ± 0.6
	C177	RS	Valine	4	15.7 ± 0.8
	C177	RS	Leucine	4	14.4 ± 0.5
	C177	RS	Isoleucine	4	12.6 ± 0.7
	C177	RS	Proline	4	15.7 ± 0.5
	C177	RS	Aspartic	4	9.8 ± 0.1
	C177	RS	Glutamic acid	4	14.4 ± 0.3
	C177		Dhanyilalanina	4	$1 + . + \pm 0.5$
	C1/7	KS DC	Filellylalallille	4	5.4 ± 0.4
	C1//	KS	Lysine	4	5.1 ± 0.5
	GIIO	WAP	Alanine	3	13.4 ± 0.1
	G110	WAP	Glycine	3	3.4 ± 0.1
	G110	WAP	Threonine	3	-23.4 ± 0.3
	G110	WAP	Serine	3	4.7 ± 0.5
	G110	WAP	Valine	3	15.8 ± 0.3
	G110	WAP	Leucine	3	13.5 ± 0.2
	G110	WAP	Isoleucine	3	12.2 + 0.4
	G110 G110	WAD	Drolino	2	12.5 ± 0.4 15.8 ± 0.3
	C110		Acmontia	5	13.0 ± 0.3 10.4 ± 0.4
	GIIO	WAP	Aspartic	3	10.4 ± 0.4
	GIIO	WAP	Glutamic acid	3	14.8 ± 0.4
	G110	WAP	Phenylalanine	3	4.1 ± 0.5
	G110	WAP	Lysine	3	5.0 ± 0.2
Weddell	G111	WAP	Alanine	3	18.9 ± 0.4
	G111	WAP	Glycine	3	5.0 ± 0.4
	G111	WAP	Threonine	3	-22.1 ± 0.6
	G111	WAP	Serine	3	8.6 ± 0.1
	G111	WAP	Valine	3	22.9 ± 0.5
	G111	WAP	Leucine	3	22.9 ± 0.3 20.8 ± 0.4
	G111	WAD	Isolouoino	2	20.6 ± 0.4
		WAP	Isoleucine	3	19.0 ± 0.0
	GIII	WAP	Proline	3	20.8 ± 0.9
	GIII	WAP	Aspartic	3	16.7 ± 0.5
	G111	WAP	Glutamic acid	3	20.4 ± 0.5
	G111	WAP	Phenylalanine	3	5.3 ± 0.4
	G111	WAP	Lysine	3	6.7 ± 0.4
	W006	WAP	Alanine	3	20.7 ± 0.2
	W006	WAP	Glycine	3	2.1 ± 0.1
	W006	WAP	Threonine	3	-294 ± 03
	W006	WAP	Serine	3	67 ± 0.2
	W006	WAD	Valina	2	0.7 ± 0.2 24.0 ± 0.5
	WOOD		v anne	5	24.0 ± 0.3
	W 006	WAP	Leucine	3	21.7 ± 0.4
	W006	WAP	Isoleucine	3	21.4 ± 0.9
	W006	WAP	Proline	3	18.0 ± 0.1
	W006	WAP	Aspartic	3	12.8 ± 0.1
	W006	WAP	Glutamic acid	3	20.8 ± 0.2
	W006	WAP	Phenylalanine	3	5.9 ± 0.5
	W006	WAP	Lysine	1	3.1
	W013	WAP	Alanine	3	22.1 ± 0.1
	W013	WAP	Glycine	3	2.3 ± 0.1
	W013	WAD	Threenine	3	-310 ± 0.1
	W013		Sorino	2	-51.7 ± 0.3
	W015	WAP	Serine	3	$\delta.0 \pm 0.2$
	W013	WAP	vaiine	5	25.5 ± 0.5
	W013	WAP	Leucine	3	23.5 ± 0.1
	W013	WAP	Isoleucine	3	24.0 ± 0.2
	W013	WAP	Proline	3	18.5 ± 0.2
	W013	WAP	Aspartic	3	14.2 ± 0.1

	W013	WAP	Glutamic acid	3	22.2 ± 0.2
	W013	WAP	Phenylalanine	3	5.9 ± 0.1
	W013	WAP	Lysine	2	3.6 ± 0.8
	W185	RS	Alanine	3	22.8 ± 0.1
	W185	RS	Glycine	3	6.9 ± 0.9
	W185	RS	Threonine	3	-29.9 ± 0.4
	W185	RS	Serine	3	9.0 ± 0.5
	W185	RS	Valine	3	24.2 ± 0.4
	W185	RS	Leucine	3	22.6 ± 0.4
	W185	RS	Isoleucine	3	21.7 ± 0.6
	W185	RS	Proline	3	21.0 ± 0.1
	W185	RS	Aspartic	3	17.2 ± 0.2
	W185	RS	Glutamic acid	3	20.7 ± 0.4
	W185	RS	Phenylalanine	3	5.0 ± 0.0
	W185	RS	Lysine	3	5.4 ± 0.4
	W220	RS	Alanine	3	23.1 ± 0.1
	W220	RS	Glycine	3	9.4 ± 0.3
	W220	RS	Threonine	3	-27.9 ± 0.3
	W220	RS	Serine	3	10.9 ± 0.3
	W220	RS	Valine	3	25.0 ± 0.6
	W220	RS	Leucine	3	23.3 ± 0.2
	W220	RS	Isoleucine	3	22.8 ± 1.0
	W220	RS	Proline	3	21.3 ± 0.7
	W220	RS	Aspartic	3	18.6 ± 0.1
	W220	RS	Glutamic acid	3	22.3 ± 0.2
	W220	RS	Phenylalanine	3	6.4 ± 0.1
	W220	RS	Lysine	3	6.8 ± 0.8
	WS11-11	RS	Alanine	3	22.5 ± 0.1
	WS11-11	RS	Glycine	3	7.0 ± 0.9
	WS11-11	RS	Threonine	3	-28.3 ± 0.3
	WS11-11	RS	Serine	3	9.2 ± 0.5
	WS11-11	RS	Valine	3	24.6 ± 0.3
	WS11-11	RS	Leucine	3	22.6 ± 0.3
	WS11-11	RS	Isoleucine	3	21.7 ± 0.9
	WS11-11	RS	Proline	3	20.4 ± 0.9
	WS11-11	RS	Aspartic	3	17.5 ± 0.5
	WS11-11	RS	Glutamic acid	3	21.5 ± 0.3
	WS11-11	RS	Phenylalanine	3	5.6 ± 0.2
	WS11-11	RS	Lysine	3	5.8 ± 0.5
Ross	R101	AM	Alanine	3	20.3 ± 0.3
	R101	AM	Glycine	3	2.9 ± 0.2
	R101	AM	Threonine	3	-29.2 ± 0.2
	R101	AM	Serine	3	4.4 ± 0.7
	R101	AM	Valine	3	21.5 ± 0.1
	R101	AM	Leucine	3	19.9 ± 0.3
	R101	AM	Isoleucine	3	20.1 ± 1.0
	R101	AM	Proline	3	17.3 ± 0.3
	R101	AM	Aspartic	3	15.9 ± 0.1
	R101	AM	Glutamic acid	3	18.3 ± 0.7
	R101	AM	Phenylalanine	3	2.5 ± 0.2
	R101	AM	Lysine	na	Na
	R103	AM	Alanine	3	18.5 ± 0.3
	R103	AM	Glycine	3	5.1 ± 0.4
	R103	AM	Threonine	3	-27.4 ± 0.7
	R103	AM	Serine	3	5.4 ± 0.8
	R103	AM	Valine	3	20.0 ± 0.4

			1	1
R103	AM	Leucine	3	18.6 ± 0.3
R103	AM	Isoleucine	3	15.7 ± 0.6
R103	AM	Proline	3	16.9 ± 0.6
R103	AM	Aspartic	3	13.9 ± 0.2
R103	АМ	Glutamic acid	3	17.2 ± 0.6
R103	AM	Phenylalanine	3	2.6 ± 0.4
R103	AM	I vsine	3	1.8 ± 0.4
R105	AM	Alanine	3	1.0 ± 0.1 18.8 ± 0.1
R106		Glycine	3	5.7 ± 0.3
R100 R106		Thraanina	3	3.7 ± 0.3
R100	AM	I meonne Soria o	5	-27.3 ± 0.3
R106	AM	Serine	3	5.8 ± 0.4
R106	AM	Valine	3	19.3 ± 0.4
R106	AM	Leucine	3	17.9 ± 0.3
R106	AM	Isoleucine	3	18.8 ± 0.7
R106	AM	Proline	3	17.3 ± 0.2
R106	AM	Aspartic	3	14.0 ± 0.2
R106	AM	Glutamic acid	3	16.9 ± 0.3
R106	AM	Phenylalanine	3	1.9 ± 0.2
R106	AM	Lysine	3	2.5 ± 0.4
R111	AM	Alanine	3	18.6 ± 0.3
R111	АМ	Glycine	3	5.2 ± 0.1
R111	АМ	Threonine	3	-28.0 ± 0.1
R111	AM	Serine	3	5.7 ± 0.3
R111	AM	Valine	3	19.7 ± 0.3
R111 R111	ΔM	Leucine	3	19.7 ± 0.3 18.2 ± 0.3
R111 R111		Isoleucine	3	18.2 ± 0.5 18.4 ± 0.7
D111	AM	Drolino	3	16.4 ± 0.7
N111 D111	AM	A an anti a	5	10.4 ± 0.9
KIII D111	AM	Aspartic	3	13.6 ± 0.2
KIII D111	AM	Glutamic acid	3	$1/.6 \pm 0.3$
RIII	AM	Phenylalanine	3	1.9 ± 0.1
R111	AM	Lysine	3	3.4 ± 0.2
R112	AM	Alanine	3	19.2 ± 0.5
R112	AM	Glycine	3	4.8 ± 0.5
R112	AM	Threonine	3	-28.0 ± 0.7
R112	AM	Serine	3	4.7 ± 0.4
R112	AM	Valine	3	19.7 ± 0.1
R112	AM	Leucine	3	18.2 ± 0.1
R112	AM	Isoleucine	2	17.7 ± 0.6
R112	AM	Proline	3	17.1 ± 0.6
R112	АМ	Aspartic	3	14.3 ± 0.4
R112	АМ	Glutamic acid	3	17.6 ± 0.5
R112	AM	Phenylalanine	3	39 ± 02
R112	AM	I vsine	3	3.9 = 0.2 3.1 ± 0.4
R112 R114	PS	Alanine	3	17.6 ± 0.4
R114 D114		Glyging	3	17.0 ± 0.4 5.0 ± 0.2
R114 D114		Thraanina	3	3.9 ± 0.3
N114 D114	LQ DC	S orige	2	-23.9 ± 0.2
K114 D114	KS DC	Serine	3	5.9 ± 0.8
K114	KS DC	vaime	3	19.0 ± 0.4
KII4	KS	Leucine	3	$1/.5 \pm 0.4$
RI14	RS	Isoleucine	na	Na
R114	RS	Proline	3	18.1 ± 0.8
R114	RS	Aspartic	3	12.9 ± 0.2
R114	RS	Glutamic acid	3	17.5 ± 0.8
R114	RS	Phenylalanine	3	3.1 ± 0.3
R114	RS	Lysine	2	3.3 ± 0.1

224	Table S9. Results of one-way ANOVA Bonferroni post-hoc comparisons for
225	amino acid δ^{15} N data for the three seal species. Significant <i>p</i> -values are < 0.05.

Alla values Comparison Ala <0.001 Crabeater vs. Ross <0.003 Ross vs. Weddell 0.003 Ross vs. Weddell Gly - Crabeater vs. Ross - Ross vs. Weddell 0.006 Crabeater vs. Ross <0.001 Crabeater vs. Weddell 0.002 Ross vs. Weddell 0.001 Crabeater vs. Ross <0.001 Crabeater vs. Ross <	Amino Acid	ANOVA Post-hoc p-	Comparison
Ala <0.001	Ammo Aciu	values	Comparison
<0.001 Crabeater vs. Weddell 0.003 Ross vs. Weddell - Crabeater vs. Ross - Crabeater vs. Weddell - Ross vs. Weddell 0.001 Crabeater vs. Ross <0.001	Ala	< 0.001	Crabeater vs. Ross
0.003 Ross vs. Weddell Gly - Crabeater vs. Ross - Crabeater vs. Weddell - Ross vs. Weddell Thr 0.01 Crabeater vs. Ross 0.006 Crabeater vs. Weddell - Ross vs. Weddell - Ross vs. Weddell - Ross vs. Weddell - Ross vs. Weddell Ser - Crabeater vs. Ross <0.001		< 0.001	Crabeater vs. Weddell
Gly - Crabeater vs. Ross - Crabeater vs. Weddell - Ross vs. Weddell Thr 0.01 Crabeater vs. Ross 0.006 Crabeater vs. Weddell - Ross vs. Weddell - Ross vs. Weddell - Ross vs. Weddell Ser - Crabeater vs. Ross <0.001		0.003	Ross vs. Weddell
- Crabeater vs. Weddell - Ross vs. Weddell Thr 0.01 Crabeater vs. Ross 0.006 Crabeater vs. Weddell - Ross vs. Weddell Ser - Crabeater vs. Ross 0.001 Crabeater vs. Weddell 0.002 Ross vs. Weddell 0.001 Crabeater vs. Ross <0.001	Gly	-	Crabeater vs. Ross
- Ross vs. Weddell Thr 0.01 Crabeater vs. Ross 0.006 Crabeater vs. Weddell - Ross vs. Weddell Ser - Crabeater vs. Ross 0.001 Crabeater vs. Weddell 0.002 Ross vs. Weddell 0.002 Val <0.001		_	Crabeater vs. Weddell
Thr 0.01 Crabeater vs. Ross 0.006 Crabeater vs. Weddell - Ross vs. Weddell Ser - Crabeater vs. Ross <0.001		_	Ross vs. Weddell
0.006 Crabeater vs. Weddell - Ross vs. Weddell Ser - Crabeater vs. Ross <0.001	Thr	0.01	Crabeater vs. Ross
- Ross vs. Weddell Ser - Crabeater vs. Ross <0.001		0.006	Crabeater vs. Weddell
Ser - Crabeater vs. Ross <0.001		_	Ross vs. Weddell
<0.001	Ser	_	Crabeater vs. Ross
0.002 Ross vs. Weddell Val <0.001		< 0.001	Crabeater vs. Weddell
Val <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Weddell <0.001 Ross vs. WeddellLeu <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Weddell <0.001 Ross vs. Weddell <0.001 Ross vs. Weddell <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Weddell <0.001 Ross vs. Weddell <0.001 Ross vs. Weddell <0.001 Ross vs. Weddell <0.001 Ross vs. Weddell <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Ross <0.001 Ross vs. Weddell <0.001 Ross vs. Weddell <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Weddell <0.001 Crabeater vs. Weddell <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Ross <0.001 Ross vs. Weddell <0.003 Crabeater vs. Ross <0.004 <		0.002	Ross vs. Weddell
	Val	< 0.001	Crabeater vs. Ross
<0.001 Ross vs. Weddell Leu <0.001		< 0.001	Crabeater vs. Weddell
Leu <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Weddell <0.001 Ross vs. WeddellIle <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Weddell <0.001 Ross vs. Weddell <0.001 Ross vs. Weddell <0.001 Ross vs. Weddell <0.001 Ross vs. Weddell <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Weddell <0.001 Ross vs. Weddell <0.001 Crabeater vs. Weddell <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Weddell <0.001 Crabeater vs. Weddell <0.001 Crabeater vs. Weddell <0.001 Crabeater vs. Weddell <0.001 Ross vs. Weddell <0.003 Crabeater vs. Ross <0.004 Ross vs. Weddell <0.005 Ross vs. Weddell		< 0.001	Ross vs. Weddell
$ \begin{array}{ c c c c c } \hline & <0.001 & Crabeater vs. Weddell \\ \hline & <0.001 & Ross vs. Weddell \\ \hline & <0.001 & Crabeater vs. Ross \\ \hline & <0.001 & Crabeater vs. Weddell \\ \hline & <0.001 & Ross vs. Weddell \\ \hline & <0.001 & Ross vs. Weddell \\ \hline & <0.001 & Crabeater vs. Ross \\ \hline & <0.001 & Crabeater vs. Weddell \\ \hline & <0.001 & Ross vs. Weddell \\ \hline & <0.001 & Ross vs. Weddell \\ \hline & <0.001 & Crabeater vs. Ross \\ \hline & <0.001 & Crabeater vs. Ross \\ \hline & <0.001 & Crabeater vs. Weddell \\ \hline & \\ \hline & - & Ross vs. Weddell \\ \hline & \\ \hline \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline & \hline \hline & \\ \hline \hline \hline & \\ \hline \hline \hline \hline$	Leu	< 0.001	Crabeater vs. Ross
<0.001 Ross vs. Weddell Ile <0.001		< 0.001	Crabeater vs. Weddell
Ile <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Weddell <0.001 Ross vs. WeddellPro 0.03 Crabeater vs. Ross <0.001 Crabeater vs. Weddell <0.001 Ross vs. Weddell <0.001 Ross vs. Weddell <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Weddell $-$ Ross vs. WeddellGlu <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Weddell <0.001 Ross vs. WeddellPhe <0.001 Crabeater vs. Ross $<-$ Crabeater vs. Ross $<-$ Crabeater vs. WeddellLys 0.009 Crabeater vs. Ross $-$ Crabeater vs. Ross $-$ Crabeater vs. Weddell 0.005 Ross vs. Weddell		< 0.001	Ross vs. Weddell
	Ile	< 0.001	Crabeater vs. Ross
<0.001 Ross vs. Weddell Pro 0.03 Crabeater vs. Ross <0.001		< 0.001	Crabeater vs. Weddell
Pro 0.03 Crabeater vs. Ross <0.001 Crabeater vs. Weddell <0.001 Ross vs. WeddellAsp <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Weddell $-$ Ross vs. WeddellGlu <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Ross <0.001 Crabeater vs. Weddell <0.001 Crabeater vs. Weddell <0.001 Ross vs. Weddell <0.001 Ross vs. Weddell <0.001 Crabeater vs. Ross $-$ Crabeater vs. Ross $<-$ Crabeater vs. Weddell <0.001 Ross vs. Weddell <0.001 Ross vs. Weddell <0.001 Ross vs. Weddell <0.009 Crabeater vs. Ross $-$ Crabeater vs. Ross $-$ Crabeater vs. Weddell 0.005 Ross vs. Weddell		< 0.001	Ross vs. Weddell
<0.001Crabeater vs. Weddell<0.001	Pro	0.03	Crabeater vs. Ross
<0.001Ross vs. WeddellAsp<0.001		< 0.001	Crabeater vs. Weddell
Asp<0.001Crabeater vs. Ross<0.001		< 0.001	Ross vs. Weddell
<0.001Crabeater vs. Weddell-Ross vs. WeddellGlu<0.001	Asp	< 0.001	Crabeater vs. Ross
-Ross vs. WeddellGlu<0.001		< 0.001	Crabeater vs. Weddell
Glu<0.001Crabeater vs. Ross<0.001		_	Ross vs. Weddell
<0.001Crabeater vs. Weddell<0.001	Glu	< 0.001	Crabeater vs. Ross
<0.001Ross vs. WeddellPhe<0.001		< 0.001	Crabeater vs. Weddell
Phe <0.001 Crabeater vs. Ross - Crabeater vs. Weddell <0.001		< 0.001	Ross vs. Weddell
- Crabeater vs. Weddell <0.001	Phe	< 0.001	Crabeater vs. Ross
<0.001 Ross vs. Weddell Lys 0.009 Crabeater vs. Ross - Crabeater vs. Weddell 0.005 Ross vs. Weddell		-	Crabeater vs. Weddell
Lys 0.009 Crabeater vs. Ross - Crabeater vs. Weddell 0.005 Ross vs. Weddell		<0.001	Ross vs. Weddell
-Crabeater vs. Weddell0.005Ross vs. Weddell	Lys	0.009	Crabeater vs. Ross
0.005 Ross vs. Weddell		_	Crabeater vs. Weddell
		0.005	Ross vs. Weddell

Table S10. Bulk δ^{13} C and δ^{15} N values of crabeater, Weddell, and Ross seals from the literature. Note,

228 229 230 bulk δ^{13} C and δ^{15} N values are reported for the original measurement (Orig.) and with a correction to

whole blood (Corr.) if the sample is a tissue type with a significant isotopic offset from whole blood.

231 232 Isotopic offset between whole blood and the given sample type are reported in Tables S4 and S6, above. Abbreviations: RBCs, red blood cells; F, female; M, male; na, information not available; NDR, no dive

233

records; RS, Ross Sea; AS, Amundsen Sea; WAP, West Antarctic Peninsula; n, sample size.

Species Sample n Sex Age Area $\delta^{13}\breve{C}$ $\delta^{15}\breve{N}$ $\delta^{13}C$ δ^{15}	r. N Source
Ross (AU) (AU) (AU)	Zhao et
Serum 21 M na RS/AS 24.3 10.6 -24.0 ± 9.5	± al.
± 0.4 ± 0.6 0.4 0.2	(2004)
	_ Zhao et
Serum 12 F na RS/AS $+0.4$ $+0.5$ 0.4 0.5	al.
	(2004)
	Aubail
Hair I M na $RS = -22.3$ 10.4 -23.6 9.2	et al.
Weddell	(2011) Zhao at
Serum 17 M na RS/AS -24.6 13.3 -24.3 ± 12.2	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(2004)
	Zhao et
Serum 16 F na RS/AS $+0.0$ $+1.1$ 0.0 $+1.1$	± al.
± 0.9 ± 1.1 0.9 1.1	(2004)
-249 130 -246 ± 119	\pm Zhao et
Serum 22 na Adult RS/AS ± 0.8 ± 0.9 0.8 0.9	al.
	(2004)
Sorum 4 no Subadul PS/AS -25.5 11.5 -25.2 ± 10.4	$\pm $ Znao et
Serum 4 na t $KS/AS \pm 0.9 \pm 1.1 0.9$ 1.1	(2004)
	Zhao et
Serum 6 na Juvenile RS/AS -24.8 13.1 $-24.5 \pm$ 12.0	
± 1.0 ± 1.0 1.0 1.0	(2004)
	Zhao et
Serum 1 na Pup RS/AS -25.2 13.4 -24.9 12.	3 al.
	(2004)
D L L L L L L L L L L	± Burns
Plasma 12 na Adult RS $\pm 0.1 \pm 0.2$ 0.1 0.2	(1998)
Deen-	Burns
Plasma 6 na diving RS -25.4 12.6 $-24.8 \pm$ 11.9	\pm et al.
yearling $\pm 0.2 \pm 0.2 = 0.2 = 0.2$	(1998)
NDR 251 129 245 + 122	+ Burns
Plasma 4 na vearling RS $+0.2 + 0.1 + 0.2 + 0.1 + 0.2 = 0.1$	⁻ et al.
	(1998)
Example 1 Shallow Example 1 Constant of the state of the state	± Burns
Plasma 4 na -diving KS ± 0.1 ± 0.1 0.1 0.1	(1008)
yearing	(1998) Burns
Plasma 16 na Pup RS -26.0 13.8 $-25.4 \pm$ 13.1	\pm et al
	(1998)
	_ Aubail
Hair 12 na na RS $\begin{pmatrix} -23.2 \\ +0.1 \\ +0.2 \\ \end{pmatrix}$ $\begin{pmatrix} -23.2 \\ -23.2 \\ -23.2 \\ -24.0 \\ \pm 0.1 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0$	⁻ et al.
	(2011)
Whisker 14 na na WAP $\frac{-21.6}{\pm 0.6}$ $\frac{12.7}{\pm 0.7}$ $\frac{-23.0 \pm 12.2}{-0.6}$	± Botta

	RBCs	116	na	na	RS	-25.2 ± 0.3	12.0± 0.3	-25.2 ± 0.3	12.3 ± 0.3	(2018) Goetz et al. (2017)
Crabeater	Serum	26	М	na	RS/AS	-26.7 ± 0.9	8.2 ± 0.5	-26.4 ± 0.9	7.1 ± 0.5	Zhao et al. (2004)
	Serum	15	F	na	RS/AS	-26.5 ± 1.2	8.4 ± 0.4	-26.2 ± 1.2	7.3 ± 0.4	Zhao et al. (2004)
	Serum	30	na	Adult	RS/AS	-26.5 ± 1.0	8.4 ± 0.6	-26.2 ± 1.0	7.3 ± 0.6	Zhao et al. (2004)
	Serum	4	na	Subadul t	RS/AS	-26.1 ± 1.2	8.4 ± 0.3	-25.8 ± 1.2	7.3 ± 0.3	Zhao et al. (2004)
	Serum	3	na	Juvenile	RS/AS	-27.2 ± 1.2	8.0 ± 0.1	-26.9 ± 1.2	7.9 ± 0.1	Zhao et al. (2004)
	Serum	4	na	Pup	RS/AS	-27.4 ± 0.4	7.7 ± 0.1	-27.1 ± 0.4	6.6 ± 0.1	Zhao et al. (2004)
	Hair	33	na	na	RS	-24.3 ± 0.1	7.7 ± 0.1	-25.9 ± 0.1	7.7 ± 0.1	Aubail et al. (2011)
	Whisker	13	na	na	WAP	-23.0 ± 0.6	7.0 ± 0.8	-24.6 ± 0.6	7.0 ± 0.8	Botta et al. (2018)

235 236

239 240	Aubail A, Teilmann J, Dietz R, Rigét F, Harkonen T, Karlsson O, Rosing-Asvid A, Caurant F (2011) Investigation of mercury concentrations in fur of phocid seals using stable isotopes as
241 242	tracers of trophic levels and geographic regions. Polar Biol 34:1411-1420
243	Botta S, Secchi ER, Rogers TL, Prado JH, de Lima RC, Carlini P, Negrete J (2018) Isotopic
244	niche overlap and partition among three Antarctic seals from the Western Antarctic
245	Peninsula. Deep Sea Res II 149:240-924
246	-
247	Burns JM, Trumble SJ, Castellini MA, Testa JW (1998) The diet of Weddell seals in McMurdo
248	Sound, Antarctica as determined from scat collections and stable isotope analysis. Polar Biol
249	19:272-282
250	
251	Goetz KT, Burns JM, Hückstädt LA, Shero MR, Costa DP (2017) Temporal variation in isotopic
252	composition and diet of Weddell seals in the western Ross Sea. Deep Sea Res II 140:36-44
253	• •

REFERENCES

- Hückstädt LA, Burns JM, Koch PL, McDonald BI, Crocker DE, Costa DP (2012a) Diet of a
 specialist in a changing environment: the crabeater seal along the western Antarctic
 Peninsula. Mar Ecol Prog Ser 455:287-301
- 257
- Zhao L, Castellini MA, Mau TL, Trumble SJ (2004) Trophic interactions of Antarctic seals as
 determined by stable isotope signatures. Polar Biol 27:368-373
- 260