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ABSTRACT 27 

 28 

Ross seals (Ommatophoca rossii) are one of the least studied marine mammals, with little 29 

known about their foraging ecology. Research to date using bulk stable isotope analysis suggests 30 

that Ross seals have a trophic position intermediate between that of the Weddell (Leptonychotes 31 

weddellii) and crabeater (Lobodon carcinophaga) seals. However, consumer bulk isotope values 32 

not only reflect trophic dynamics, but also variations in baseline isotope values, which can be 33 

substantial. Here, we use a compound specific isotope analysis of amino acids (CSI-AA) to 34 

separate isotopic effects of a shifting baseline versus trophic structure on the foraging ecology of 35 

these ecologically important, but poorly understood Antarctic pinnipeds. We find that all three 36 

seals use different foraging habitats; Ross seals forage in a pelagic food web distinct from that of 37 

crabeater and Weddell seals. Crabeater and Weddell seals are foraging within similar food webs 38 

closer to shore. However, isotopic evidence suggests that crabeater seals are likely following sea 39 

ice, while Weddell seals target productive areas of the continental shelf of Western Antarctica. In 40 

addition, our CSI-AA data indicate that Ross seals have a high trophic position equivalent to that 41 

of Weddell seals, contrary to prior conclusions from nitrogen isotope results on bulk tissues. 42 

CSI-AA indicates that crabeater seals are at a trophic position lower than that of Ross and 43 

Weddell seals, consistent with a krill-dominated diet. Our results redefine the view of the Ross 44 

seal trophic dynamics and foraging ecology, while also highlighting the importance of 45 

quantifying baseline isotope variations in foraging studies. 46 
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INTRODUCTION 52 

 53 

The Ross seal (Ommatophoca rossii) is one of the least studied marine mammals (Reeves 54 

et al. 2008, Bengtson et al. 2011). The total population estimate for this species is around 55 

200,000, considerably less than the estimates for other Antarctic true seals, which are 10 to 15 56 

million individuals for crabeater seals (Lobodon carcinophaga) and approximately one million 57 

individuals for Weddell seals (Leptonychotes weddellii) (Laws 1977, Reeves et al. 2008, 58 

Bengtson et al. 2011). With individuals likely spending most of their time at sea and in habitats 59 

that are logistically challenging to access, the Ross seal is not commonly observed. Several keys 60 

aspects of their biology remain poorly understood, including their preferred prey, foraging 61 

habitat, and behavior. In contrast, many studies have been conducted on crabeater and Weddell 62 

seals and, thus, more information is available on their ecology.  63 

Conventional techniques for studying an animal’s diet, such as scat and stomach content 64 

analysis, have significant limitations when applied to Antarctic pinnipeds. These methods 65 

capture only a snapshot of a predator’s diet, perhaps one to two days (Dellinger and Trillmich 66 

1988, Burns et al. 1998). In addition, since soft tissues are more completely digested than hard 67 

tissues, resulting in biases towards prey with indigestible hard parts (Burns et al. 1998, Staniland 68 
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2002, Arim and Naya 2003, Yonezaki et al. 2003). Given these drawbacks, recent research on 69 

Antarctic seal ecology has often used bulk isotope values.  70 

Measurements of bulk tissue carbon (δ13C) and nitrogen (δ15N) isotope values (i.e., the 71 

weighted average of all components within in a tissue) have been used to indicate a predator’s 72 

foraging region and trophic position (Boecklen et al. 2011). This approach has the advantage of 73 

providing an integrated view of an animal’s diet over longer time scales (weeks to years 74 

depending on the tissue) than the traditional procedures (Vander Zanden et al. 2015). Carbon 75 

isotope values show little 13C-enrichment with trophic transfer. Thus, consumer δ13C values are 76 

often thought to closely reflect values at the base of marine food webs, making them useful for 77 

studying the foraging areas of a predator. Spatial changes in the δ13C of phytoplankton (often 78 

referred to as “baseline” δ13C values) reflect variations in dissolved inorganic carbon δ13C 79 

values, dissolved CO2 concentrations, temperature, cell size and geometry, internal biological 80 

parameters (e.g., growth rate), and CO2 drawdown (reviewed in McMahon et al. 2013). Provided 81 

the primary processes driving variation are known, bulk δ13C values of an animal can give 82 

valuable information on its foraging habitat. The Southern Ocean is known to have considerable 83 

spatial variation in baseline δ13C (δ13Cbaseline) values (Rau et al. 1982, Quillfeldt et al. 2010, 84 

Brault et al. 2018). Several studies have observed decreasing δ13C values with increasing 85 

latitude, with offsets between about 55 °S and 79 °S of approximately 3 ‰, largely reflecting 86 

variations in sea surface temperature (Rau et al. 1982, Graham et al. 2010, Quillfeldt et al. 2010, 87 

Magozzi et al. 2017, Brault et al. 2018).  88 

In contrast to carbon isotopes, trophic transfers considerably affect an animal’s δ15N 89 

values. Since a consumer’s tissues become enriched in 15N by ~ 2-5 ‰ with each trophic step 90 

(e.g., primary producers to herbivores to carnivores) due to the preferential loss of 14N during 91 
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amino acid metabolism (Minagawa and Wada, 1984), δ15N values are often used to indicate an 92 

animal’s trophic position. However, variations in baseline δ15N values (δ15Nbaseline) also occur 93 

and are passed on, with additional change due to trophic transfers, to upper trophic level 94 

predators (McMahon et al. 2013). Nutrient source (e.g., nitrate, ammonium, or N2 fixation), 95 

microbial transformations (e.g., denitrification), and extent of nitrogen pool drawdown in a given 96 

environment can all strongly impact primary producer δ15N values (reviewed in McMahon et al. 97 

2013). If variations in these factors are well understood, then the bulk δ15N values of a consumer 98 

provide insights into its foraging region and trophic position (Post 2002). As with carbon, 99 

substantial spatial variations in δ15Nbaseline values occur in the Southern Ocean (DiFiore et al. 100 

2006, DiFiore et al. 2009, Somes et al. 2010, Jaeger et al. 2010, Brault et al. 2018). Low 101 

δ15Nbaseline values have been found for much of the Southern Ocean except in areas near the 102 

continent with extensive coastal open water polynya “hot spots” (Arrigo and Van Dijken 2003), 103 

where the baseline is up to ~ 3 ‰ higher than in pelagic regions (DiFiore et al. 2006, DiFiore et 104 

al. 2009, Brault et al. 2018). This pattern likely derives from changes in the extent of nutrient 105 

drawdown due to enhanced primary productivity, the main process influencing δ15Nbaseline in the 106 

Southern Ocean since it is a high nutrient-low chlorophyll (HNLC) region (Brault et al. 2018). 107 

Although much remains unknown, especially regarding the behaviors and movements of 108 

the Ross seal, recent studies have furthered our understanding of Antarctic seal ecology. Isotopic 109 

measurements, coupled with traditional ecological methods, have indicated that Weddell seals 110 

forage near the top of the Antarctic food web, consuming diverse diets of fish, cephalopods, and 111 

invertebrates (Burns et al. 1998, Plötz 2001, Lake et al. 2003, Goetz et al. 2017). Researchers 112 

have debated the contribution of the upper trophic level prey species, in particular the Antarctic 113 

toothfish (Dissotichus mawsoni), to Weddell seal diets with some studies suggesting a substantial 114 
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contribution of D. mawsoni (Ponganis and Stockard 2007, Ainley and Siniff 2009, Goetz et al. 115 

2017). Hard parts of D. mawsoni are not consumed and, thus, not detected via scat and stomach 116 

content analyses, which have been used for much of the prior research on Weddell seal foraging 117 

ecology. Recently, Goetz et al. (2017) assessed Weddell seal foraging ecology with bulk δ13C 118 

and δ15N measurements of vibrissae and red blood cells from Ross Sea specimens. They reported 119 

considerable individual variability in diet and that Antarctic silverfish (Pleuragamma 120 

antarcticum) and cod icefishes (Trematomus species) were the primary prey consumed by 121 

Weddell seals. Overall, D. mawsoni contribute less than 2 % to the Weddell seal diet. However, 122 

D. mawsoni may become increasingly important with age and at certain times in the life cycle, 123 

such as during reproduction and molting, since this fish has a high fat content and energy density 124 

(Goetz et al. 2017). Additionally, Goetz et al. (2017) noted temporal diet shifts – likely in 125 

response to sea ice dynamics affecting prey abundances. 126 

Crabeater seals occupy a much lower trophic level than Weddell seals, with diets 127 

dominated by Antarctic krill (Euphausiia superba), as evidenced by the results of both scat and 128 

stomach content analyses as well as bulk isotopic analysis (Laws 1977, Rau et al. 1992, Burns et 129 

al. 2004, Zhao et al. 2004, Burns et al. 2008, Aubail et al. 2011). Recent work by Hückstädt et al. 130 

(2012a) has revealed temporal variability in crabeater seal diet composition via bulk δ13C and 131 

δ15N measurements of vibrissae. The E. superba contribution ranged from 81 % to 95 %, likely 132 

in response to climate shifts affecting krill abundances. The authors also reported significant 133 

variation in δ13C values with body mass (increasing δ13C values with increasing body mass) and 134 

season (highest δ13C values in the austral winter) that they suggested might result from changes 135 

in δ13Cbaseline values associated with temporal and/or spatial shifts between pelagic phytoplankton 136 

and sea ice phytoplankton communities (Hückstädt et al. 2012a). 137 
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Only a small number of studies have examined Ross seal foraging ecology. Dive records 138 

suggest that these animals typically dive from 100 to 300 m (maximum depth of 792 m) in 139 

search of mesopelagic squid and fish (Bengtson and Stewart 1997, Blix and Nordøy 2007). 140 

Analysis of Ross seal stomach contents showed that Antarctic silverfish (Pleurogramma 141 

antarcticum) and glacial squid (Psychroteuthis glacialis) were found in varying proportions 142 

(Skinner and Klages, 1994). Arcalís-Planas et al. (2015) suggested little use of sea ice by Ross 143 

seals, based on telemetry and remote sensing data.  Seals tracked in this study generally 144 

remained in pelagic regions except for haul outs on ice to molt (from December to January) and 145 

breed (from late October to mid-November). During their extended pelagic period (February to 146 

mid-October), Ross seals remained an average ~ 840 km (range 587 to 1,282 km) seaward from 147 

the ice edge (Arcalís-Planas et al. 2015). Bulk δ13C and δ15N isotope measurements place the 148 

Ross seal a trophic level intermediate between Weddell seals and crabeater seals (Rau et al. 149 

1992, Zhao et al. 2004, Aubail et al. 2011). Thus, bulk isotope results to date suggest that Ross 150 

seals consume mostly squid and fish, but with a contribution from lower trophic level prey like 151 

E. superba (Rau et al. 1992, Zhao et al. 2004, Aubail et al. 2011). 152 

While these bulk isotope approaches have shed new light on the foraging ecology of 153 

these Antarctic pinnipeds, it is critical to remember that the Southern Ocean exhibits strong 154 

spatial gradients in both δ13Cbaseline and δ15Nbaseline values (DiFiore et al. 2006, DiFiore et al. 155 

2009, Jaeger et al. 2010, Somes et al. 2010, Brault et al. 2018), suggesting that we likely need to 156 

explicitly tease apart the relative influences of trophic dynamics and baseline variation on seal 157 

isotope values. For instance, Ross seals may spend more time in pelagic regions than other true 158 

Antarctic seals (Arcalís-Planas et al. 2015), and thus forage in areas with lower δ15Nbaseline values 159 

than the nearshore regions of Weddell and crabeater seals (DiFiore et al. 2006, DiFiore et al. 160 
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2009, Brault et al. 2018). If so, not accounting for spatial variation in the δ15Nbaseline would result 161 

in Ross seals being assigned a lower trophic position than species foraging nearer the continent.  162 

Compound-specific isotopic analysis of amino acids (CSI-AA) has opened new doors to 163 

studying the foraging ecology and trophic dynamics of marine predators (e.g., Graham et al. 164 

2010). Since only certain amino acids become enriched in 15N with increasing trophic level 165 

(“trophic” amino acids), while others (“source” amino acids) do not, impacts of δ15Nbaseline 166 

variation and trophic position on consumer δ15N values can be disentangled using this technique 167 

(Ohkouchi et al. 2017). Glutamic acid/glutamine (Glu) and phenylalanine (Phe) are widely 168 

considered the most representative trophic and source amino acids, respectively, with Phe δ15N 169 

values typically used a proxy for baseline isotope values, and Phe and Glu δ15N values (δ15NPhe 170 

and δ15NGlu, correspondingly) used together to estimate an organism’s trophic position (TP) 171 

internally indexed to the baseline (Ohkouchi et al. 2017). Proline (Pro) has also been shown to be 172 

a reliable trophic amino acid, however, with less variability than Glu for trophic 15N-enrichment 173 

factors between organisms (McMahon et al. 2015). As a consequence, Pro and Phe may 174 

represent a new CSI-AA combination that provides more ecologically realistic TP estimates for 175 

higher trophic level consumers (McMahon and McCarthy 2016).  176 

Here, we report the first CSI-AA data for modern Ross, Weddell, and crabeater seals to 177 

refine our understanding of the trophic dynamics and foraging ecology of these important 178 

Antarctic predators. In particular, CSI-AA allows us to directly examine changes in baseline 179 

δ15N values linked to these seals’ diets, and so to gain information on their foraging regions in 180 

conjunction with their trophic dynamics. Comparison of amino acid isotope data across these 181 

three Antarctic seals will also further our understanding of present Antarctic food web structures, 182 
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which will provide valuable ecosystem baselines in light of ongoing climate change (Atkinson et 183 

al. 2004, Ducklow et al. 2007, Ducklow et al. 2012, Montes-Hugo et al. 2009).    184 

 185 

MATERIALS AND METHODS 186 

Sample collection 187 

Tissue samples from Ross (n = 15), Weddell (n = 38), and crabeater seals (n = 41) were 188 

collected along western Antarctica from the West Antarctic Peninsula (WAP) to the Ross Sea 189 

during multiple field seasons in the austral summers of 2008/09 and 2010/11 aboard the RV 190 

Oden. These animal captures were conducted in accordance with the regulations of the Swedish 191 

Polar Research Secretariat (Registration No. 2010-112). All other samples were obtained from 192 

animal captures conducted under National Marine Fisheries Service permit No. 87-1851-00. In 193 

most cases, body mass, age class (juvenile, subadult, and adult), gender, and location were 194 

recorded for each sampled seal (Table S1). Additionally, the Institutional Animal Care and Use 195 

Committee (IACUC) at the University of Santa Cruz (UC Santa Cruz) approved all protocols for 196 

these samples.  197 

Whole blood samples were obtained from most seals, and in some cases, clot (blood with 198 

serum removed), red blood cells (RBCs, whole blood exposed to an anticoagulant, heparin, 199 

before having plasma removed), and hair samples were also collected. The sampling protocols 200 

are described in Aubail et al. (2011) and Goetz et al. (2017). Whiskers were taken from crabeater 201 

seals during multiple cruises on the RV Lawrence M. Gould along the WAP, during fall 2001 (n 202 

= 7), winter 2001 (n = 7), fall 2002 (n = 15), winter 2002 (n = 14), and fall 2007 (n = 9). Plasma 203 

was also obtained from a few of the fall 2007 individuals (G105, G110, and G112) (Hückstädt et 204 

al. 2012a). In addition, serum or plasma was obtained from two Weddell seals during the fall 205 
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2007 sampling in this region, and whiskers were taken from two WAP Weddell seals in the 206 

austral summer of 2009/10. Whisker samples were also collected from Weddell seals during the 207 

summer 2009/10 (n=11), summer 2010/11 (n=10), summer 2011/12 (n=18) (Goetz et al. 2017). 208 

Hückstädt et al. (2012a) describe the procedure for sampling the whiskers, and Goetz et al. 209 

(2017) describe the protocol used for collecting seal blood.   210 

Several blood samples were obtained from Weddell seals in the McMurdo Sound region, 211 

Ross Sea, Antarctica over multiple field seasons. Twelve whole blood samples were taken from 212 

juvenile Weddell seals near Inexpressible Island (74.9 °S, 163.7 °E) during the austral summer of 213 

2010/11. Whole blood samples were taken from Weddell seals in the austral summer of 2010/11 214 

(n=5) and austral spring of 2012 (n=5). RBCs were sampled in the austral summer of 2009/10 215 

(n=5), austral summer of 2011/12 (n=5), and austral spring of 2012 (n=5). Whole blood, plasma, 216 

and serum were obtained from five Weddell seals sampled in the austral spring of 2015, and 217 

whole blood from an additional seven Weddell seals was also acquired during this time. Goetz et 218 

al. (2017) describe the sampling protocol for these Weddell seals. 219 

Lastly, a few samples were obtained from crabeater seals in McMurdo Sound. Hair 220 

samples were taken from three recently deceased juvenile crabeater seals that were found on the 221 

seasonal pack ice around Cape Royds in the austral summer of 2009/10. Whole blood was 222 

sampled, using the protocol of Goetz et al. (2017), from a male adult crabeater seal found in 223 

Erebus Bay during the austral summer of 2010/11. 224 

 225 

Sample preparation 226 

After sample collection, all samples were kept frozen at -20 °C. Blood samples were 227 

freeze-dried with a Labconco Freeze Dry System (Lyph Lock 4.5) and homogenized manually 228 
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prior to isotope analysis. Lipid extraction was not performed on the blood samples, as blood has 229 

a relatively low lipid content. A test set of blood samples with and without lipid extraction 230 

revealed no significant effect of lipid extraction on blood δ13C values (Table S2), though lipid 231 

extraction did have an undesired impact on δ15N values (Table S2).  232 

Hair and whisker samples are known to have high enough lipid contents to affect δ13C 233 

values so these samples were lipid extracted a la Hückstädt et al. (2012a). These samples were 234 

washed with Milli-Q water (Thermo Fisher Scientific, Inc.) and then rinsed three times in an 235 

ultrasonic bath with petroleum ether for 15 minutes.  236 

 237 

Bulk stable isotope analysis 238 

For all blood and hair samples, ~ 1 mg was weighed into tin cups (Costech, 3x5 mm) for 239 

bulk stable carbon and nitrogen isotope analysis. For hair, the follicle was removed since prior 240 

work has shown it to have a different biochemical and isotopic composition than the rest of the 241 

hair (Hückstädt et al. 2012b). This analysis was performed at the Stable Isotope Lab (SIL) of 242 

University of California - Santa Cruz (UCSC) on a Carlo Erba EA 1108 elemental analyzer 243 

coupled to a Thermo-Finnigan DeltaPlus XP isotope ratio mass spectrometer. The δ13C values 244 

were referenced to the V-PDB standard, and δ15N values were referenced to AIR. PUGel and 245 

Acetanilide standards were analyzed in each instrument session in order to correct for variations 246 

in mass across samples and instrument drift. Across 10 analytical sessions, the standard 247 

deviations were 0.1 ‰ (n = 139) for δ13C, 0.1 ‰ (n = 139) for δ15N, and 0.1 (n = 139) for C/N 248 

(atomic) for PUGel and 0.2 ‰ (n = 38) for δ13C, 0.2‰ (n = 38) for δ15N, and 0.4 (n = 38) for 249 

C/N (atomic) for Acetanilide. 250 

 251 
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Compound-specific isotope analysis 252 

CSI-AA was performed at UCSC via gas chromatography-combustion-isotope ratio mass 253 

spectrometry (GC-C-IRMS). All samples were prepared for GC-C-IRMS analysis using the 254 

methods described in McCarthy et al. (2007) and McCarthy et al. (2013). In brief, samples were 255 

hydrolyzed (6 N HCl for 20 hr at 110 °C) and converted to trifluoro-acetylated isopropyl amino 256 

acid derivatives. Samples were stored at -20 °C in a 1:3 TFAA:DCM (dichloromethene) solution 257 

until analysis. Immediately before the analysis, the TFAA/DCM mixture was evaporated under 258 

N2 and samples were diluted in ethyl acetate. 259 

Amino acid δ15N values were measured on a Thermo Trace GC coupled to a Thermo-260 

Finnigan DeltaPlus XP isotope-ratio-monitoring mass spectrometer (oxidation furnace at 980 ºC 261 

and reduction furnace at 650 ºC) using an SGE Analytical Science BPX5 column (60 m by 0.32 262 

mm with a 1 µm film thickness). The injector temperature was 250 ºC with a split He flow of 2 263 

mL/min. The GC temperature program was: initial temp = 70 ºC hold for 1 min; ramp 1 = 10 ºC 264 

/min to 185 ºC, hold for 2 min; ramp 2 = 2 ºC/min to 200 ºC, hold for 10 min; ramp 3 = 30 265 

ºC/min to 300 ºC, hold for 6 min. Directly measured amino acid δ15N values were corrected 266 

based on bracketed external standards of amino acids with known isotopic composition, as 267 

described in McCarthy et al. (2013). The δ15N values of 11 amino acids were quantified: alanine 268 

(Ala), glycine (Gly), threonine (Thr), serine (Ser), valine (Val), leucine (Leu), Pro, aspartic acid 269 

+ asparagine (Asp), Glu, Phe, and lysine (Lys).  270 

 271 

Data analysis 272 

Most samples were whole blood. Since bulk isotope values can vary across different 273 

tissues, species-specific corrections were applied to account for isotopic offsets between different 274 
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types of samples (see methods in Supplementary Material and resulting correction factors in 275 

Tables S3-S6). These corrections were applied to all bulk isotope data from tissues other than 276 

whole blood that had significant isotopic offsets from whole blood. An isotopic offset > 0.2 ‰ 277 

was considered significant, since the instrument error is ≤ 0.2 ‰. 278 

All data analyses were performed in R statistical software (R Core Team, 2014). Tests of 279 

normality and equal variance were conducted to assure test assumptions were met. In a few 280 

cases, an assumption was violated and a data transformation was applied, as noted in Results. 281 

Bulk isotope values of the three different seal species were compared with a one-way analysis of 282 

variance (ANOVA) and post-hoc Bonferroni pairwise comparisons. Data were Box-Cox 283 

transformed (Box and Cox, 1964). A four-way ANOVA with post-hoc Bonferroni pairwise 284 

comparisons was used to test for significant effects of gender, sampling period, age class, and 285 

region (WAP, Amundsen Sea, and Ross Sea) on the bulk isotopic values of Ross, Weddell, and 286 

crabeater seals. Both Weddell and crabeater seal data were Box-Cox transformed. Linear 287 

regression analyses were used to test for significant relationships between bulk δ13C and δ15N 288 

values and body mass for each species.  289 

A one-way ANOVA with post-hoc Bonferroni pairwise comparisons was used to test for 290 

significant differences in the δ15N values of each amino acid among the three seal species. This 291 

same procedure was conducted to compare the δ15N values for each category of amino acid (i.e., 292 

source or trophic) among the different seal species. For both Weddell and crabeater seals, a two-293 

tailed student’s t-test was used to compare the δ15N values of Pro, Glu and Phe for the WAP to 294 

those of a combined Amundsen and Ross Sea region (“Amundsen/Ross Sea” in the subsequent 295 

text). Amino acid δ15N values for seals from the Amundsen/Ross Seas were combined by species 296 

(crabeater or Weddell) since both species had bulk δ15N values that were similar between these 297 
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two regions. This analysis was not done for Ross seals since this species was almost exclusively 298 

sampled in the Amundsen Sea. A two-tailed student’s t-test was used to compare the δ15NPhe 299 

values of Weddell seals to those of crabeater seals for the WAP, and a one-way ANOVA with 300 

post-hoc Bonferroni pairwise comparisons was conducted to assess variation between the δ15NPhe 301 

values of Ross, Weddell, and crabeater seals from the Amundsen/Ross Sea region.  302 

CSI-AA based trophic positions (TPCSI-AA) were calculated using a modified version of 303 

the equation originally proposed by Chikaraishi et al. (2009). Here, we substituted Pro for Glu as 304 

the trophic amino acid, as suggested by the comparative synthesis of TPCSI-AA methods in 305 

McMahon and McCarthy (2016), because Pro trophic discrimination appears to be less variable 306 

across variations in diet. McMahon and McCarthy (2016) suggest that this new equation will 307 

likely produce more ecologically realistic TP estimates for marine mammals. TPCSI-AA was, 308 

therefore, calculated as follows: 309 

TP!"#!!! = 1 + [(δ15NPro − δ15NPhe − βPro/Phe)/TDFPro] 

where δ15NPro is the seal Pro δ15N value, βPro/Phe is the isotopic difference between Pro and Phe in 310 

marine phytoplankton (3.1 ‰; Chikaraishi et al. 2009), and TDFPro is the trophic discrimination 311 

between diet and consumer for Pro minus the same for Phe (Δ15Npro - Δ15NPhe = 4.5 ‰; 312 

McMahon and McCarthy 2016). Differences in TPCSI-AA among the three seal species were 313 

determined with a one-way ANOVA with post-hoc Bonferroni pairwise comparisons using data 314 

for individuals only from the Ross and Amundsen Seas to reduce the effect of location on our 315 

findings. Differences in TPCSI-AA between the WAP versus Amundsen and Ross Seas were 316 

determined with a two-tailed students t-test for Weddell and crabeater seals. For all statistical 317 

analyses, a result was considered significant if p < 0.05. 318 
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Lastly, maps were produced in Ocean Data View (ODV) version (4.7.4) (Schlitzer 2015) 319 

to show spatial patterns in bulk δ13C and δ15N values, as well as δ15NPhe and δ15NPro. 320 

 321 

RESULTS 322 

 323 

Bulk δ13C and δ15N values of Ross, Weddell, and crabeater seals 324 

Bulk δ13C and δ15N values varied significantly among the three species (Fig. 1, Table S7). Ross 325 

seals had significantly higher δ13C values (-23.8 ± 0.3 ‰ for the mean ± standard deviation, n = 326 

15) than both Weddell seals (-25.0 ± 0.6 ‰, n = 125) and crabeater seals (-25.0 ± 1.4 ‰, n = 97) 327 

(p < 0.001 for post-hoc Bonferroni pairwise comparisons). All seals had δ15N values 328 

significantly different from each other: crabeater seal (7.2 ± 0.8 ‰, n = 97) < Ross seal (9.1 ± 0.4 329 

‰, n = 15) < Weddell seal (12.3 ± 0.6 ‰, n = 125) (p < 0.001 for all Bonferroni post-hoc 330 

comparisons). We found no consistent relationships between bulk stable isotope values of seals 331 

and measures of sampling period, gender, age class, or body mass (see the Supplementary 332 

Material). 333 

 334 

Spatial patterns of bulk δ13C and δ15N values for Antarctic seals 335 

Both Weddell and crabeater seals showed significant spatial variation in their δ13C 336 

values. Weddell seal δ13C values were significantly greater in the Ross Sea (-25.1 ± 0.5 ‰, n = 337 

100) and the Amundsen Sea (-24.7 ± 0.4 ‰, n = 21) than in the WAP (-22.9 ± 0.9 ‰, n = 4) (p ≤ 338 

0.002 in all cases from Bonferroni post-hoc comparisons; Fig. 2a, Table S7). Likewise, the δ13C 339 

values of crabeater seals along the WAP were significantly higher (-24.0 ± 1.1 ‰, n = 52) than 340 
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those in the Amundsen Sea (-26.1 ± 0.4 ‰, n = 35) and Ross Sea (-26.1 ± 0.5 ‰, n = 10) (p < 341 

0.001 in both cases for Bonferroni post-hoc comparisons; Fig. 3a, Table S7). 342 

Unlike their bulk δ13C values, Weddell seals showed no significant differences in bulk 343 

δ15N values across the three regions (Fig. 2b, Table S7). In contrast, crabeater seals from the 344 

WAP had significantly lower δ15N values (6.8 ± 0.6 ‰, n = 52) than those from the Amundsen 345 

Sea (7.6 ± 0.6 ‰, n = 35) and Ross Sea (8.0 ± 1.4 ‰, n = 10) (p < 0.001 in both cases from 346 

Bonferroni post-hoc comparisons, Fig. 3b, Table S7). Note, spatial variation in bulk δ13C and 347 

δ15N values of Ross seals across West Antarctica could not be examined because all but one of 348 

the individuals were from the Amundsen Sea (Fig. S1). 349 

 350 

Compound-specific δ15N values of Ross, Weddell, and crabeater seals 351 

Nitrogen isotope values were significantly different among at least two of the three seal 352 

species for all amino acids, except Gly (Figs. 4 and S2, Tables S8 and S9). For most trophic 353 

amino acids (Glu, Ala, Ile, Leu, Pro, and Val), δ15N values differed significantly among all three 354 

species (Table S9), with Weddell > Ross > crabeater. For example, Pro δ15N values of Weddell 355 

seals (20.0 ± 1.4 ‰, n = 6) are significantly greater than those of Ross (17.2 ± 0.5 ‰, n = 6) and 356 

crabeater (15.6 ± 0.6 ‰, n = 6) seals (p < 0.001 in both cases from Bonferroni post-hoc 357 

comparisons). Pro δ15N values of Ross seals (17.2 ± 0.5 ‰, n = 6) are significantly greater than 358 

those of crabeater seals (15.6 ± 0.6 ‰, n = 6) with a p-value of 0.03 from Bonferroni post-hoc 359 

comparisons. For the trophic amino acid, Asp, crabeater seals had significantly lower δ15N 360 

values (10.1 ± 0.6 ‰, n = 6) than Weddell (16.2 ± 2.2 ‰, n = 6) and Ross seals (14.1 ± 1.0 ‰, n 361 

= 6) (p < 0.001 in both cases from Bonferroni post-hoc comparisons). Additionally, δ15N values 362 

among all trophic amino acids were significantly different among all three seal species (p < 363 
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0.001 in all cases from Bonferroni post-hoc comparisons) with these values decreasing in the 364 

manner: Weddell seals (21.1 ± 2.7 ‰, n = 42) > Ross seals (17.7 ± 1.9 ‰, n = 41) > crabeater 365 

seals (13.5 ± 1.9 ‰, n = 42).  366 

δ15N values were significantly different between at least two seal species for both 367 

commonly defined source amino acids (Phe and Lys). For Lys, Ross seals had significantly 368 

lower δ15N values (2.8 ± 0.7 ‰, n = 6) than Weddell (5.2 ± 1.5 ‰, n = 6) and crabeater seals (5.0 369 

± 0.4 ‰, n = 6) (p-values of 0.005 and 0.009, correspondingly, from Bonferroni post-hoc 370 

comparisons). Likewise, Ross seals had significantly lower δ15NPhe values (2.7 ± 0.7 ‰, n = 6) 371 

than Weddell (5.7 ± 0.5 ‰, n = 6) and crabeater seals (5.2 ± 1.0 ‰, n = 6) (p < 0.001 in both 372 

cases from Bonferroni post-hoc comparisons). Combined, the δ15N values of these source amino 373 

acids (Phe and Lys) for Ross seals (2.7 ± 0.7 ‰, n = 11) are less than those of crabeater (5.1 ± 374 

0.7 ‰, n = 12) and Weddell seals (5.5 ± 1.1 ‰, n = 12) with p < 0.001 in all cases from from 375 

Bonferroni post-hoc comparisons. 376 

While Gly and Ser are challenging to accurately categorize in terms of conventional 377 

trophic and source groupings (McMahon and McCarthy 2016), we do note that Ser δ15N values 378 

of Weddell seals (8.7 ± 1.4 ‰, n = 6) were significantly higher than those of both crabeater (4.2 379 

± 1.9 ‰, n = 6) and Ross seals (5.3 ± 0.6 ‰, n = 6) (p-values of < 0.001 and 0.002, respectively, 380 

from Bonferroni post-hoc comparisons). No significant differences among the three seal species 381 

occur for Gly δ15N values. Ross, Weddell, and crabeater seals have Gly δ15N values of 4.9 ± 1.1 382 

‰ (n = 6), 5.4 ± 2.9 ‰ (n = 6), and 3.8 ± 2.8 ‰ (n = 6), correspondingly. 383 

 384 

Spatial patterns of Phe, Pro, and Glu δ15N values for Antarctic seals 385 
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For Weddell seals, Phe, Pro, and Glu values did not differ significantly between the 386 

Amundsen/Ross Sea and the WAP (Fig. S4). In contrast, crabeater seals had significantly lower 387 

δ15NPhe values in the WAP (4.3 ± 0.4 ‰, n = 3) relative to those from the Amundsen/Ross Sea 388 

region (6.0 ± 0.7 ‰, n = 3) (p = 0.04, two-tailed student’s t-test) (Figs. 5 and 6, Table S8). 389 

Crabeater δ15NPro and δ15NGlu were not significantly different between the WAP (15.9 ± 0.5 ‰ 390 

and 15.0 ± 0.2 ‰, respectively, n=3 for both) and the Amundsen/Ross Sea region (15.4 ± 0.6 ‰ 391 

and 14.8 ± 0.4 ‰, correspondingly, n = 3 for both, Table S8). As with bulk isotope values, 392 

spatial variation in δ15N values of source amino acids for Ross seals could not be examined since 393 

all but one individual were from the Amundsen Sea (Fig. S3). 394 

 Both crabeater and Weddell seals had similar δ15NPhe for the Amundsen/Ross Sea region, 395 

6.0 ± 0.7 ‰ (n = 3) and 5.7 ± 0.7‰ (n = 3), respectively, that were significantly higher than the 396 

δ15NPhe for Ross seals (2.7 ± 0.7 ‰, n = 6) (p-values < 0.001 in all cases from Bonferroni post-397 

hoc comparisons). However, crabeater seals had significantly lower δ15NPhe (4.3 ± 0.4 ‰, n = 3) 398 

than Weddell seals (5.7 ± 0.4 ‰, n = 3) for the WAP (p = 0.01 from a two-tailed student’s t-test). 399 

 400 

Trophic positions of Ross, Weddell, and crabeater seals 401 

Among species, both Ross seals (3.5 ± 0.2, n = 6) and Weddell seals (3.7 ± 0.1, n = 3) 402 

were over a full trophic level higher than crabeater seals (2.4 ± 0.2, n = 3) (p < 0.001 from 403 

Bonferroni post-hoc comparisons in both cases, restricted to Amudsen/Ross Seas where all 404 

species were collected) (Fig. 7). Within species, Weddell seals had similar TPCSI-AA values for 405 

the WAP (3.3 ± 0.4, n = 3) and Amundsen/Ross Sea region (3.7 ± 0.1, n = 3). However, 406 

crabeater seals had significantly higher TPCSI-AA values in the WAP (2.9 ± 0.1, n = 3) than the 407 

Amundsen/Ross Sea region (2.4 ± 0.2, n = 3) (p = 0.03 from a two-tailed student’s t-test). For 408 
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crabeater seals, note that one subadult was included along with five adult seals in the CSI-AA 409 

sample set. Although some significant variation in bulk δ15N values was observed across 410 

different age classes for this species (see Supplementary Material), the TPCSI-AA value of the 411 

subadult from the Amundsen/Ross sea region (2.3) was indistinguishable from those of the adults 412 

from this region (2.4 ± 0.2, n = 2). Finally, we note that there were some significant differences 413 

in the bulk δ15N values of Weddell seal age classes (discussed in the Supplementary Material), 414 

but only samples from adults are used in our CSI-AA subset.  415 

 416 

DISCUSSION 417 

 418 

Ross, Weddell, and crabeater seal bulk isotope values in our study were similar to those 419 

reported in earlier work on these species for our study region (Burns et al. 1998, Zhao et al. 420 

2004, Aubail et al. 2011, Goetz et al. 2017, Botta et al. 2018), after correction for isotopic offsets 421 

for different tissue types (Table S10). These new bulk isotope results are especially valuable for 422 

Ross seals since very little isotopic measurements exist to date. Our bulk δ15N values, like those 423 

of prior studies (Rau et al. 1992, Burns et al. 1998, Zhao et al. 2004, Aubail et al. 2011, Cipro et 424 

al. 2012, and Hückstädt et al. 2012a), all point to Ross seals being at an intermediate trophic 425 

position between those of Weddell and crabeater seals. In the following discussion we explore 426 

the trophic positions, diets, and foraging habitats of these three seal species using novel CSI-AA 427 

data to help interpret our bulk isotope data.  428 

 429 

Spatial patterns in seal bulk and amino acid isotope values  430 
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Both Weddell and crabeater seals showed spatial patterns in their bulk δ13C values. 431 

Weddell and crabeater seals had significantly higher δ13C values in the WAP than the Amundsen 432 

and Ross Seas. As this carbon isotope gradient occurs in Weddell and crabeater seals at different 433 

trophic levels, it is likely driven by changes in baseline δ13C values. Prior research has shown 434 

that δ13C values decrease with increasing latitude in the West Antarctic as a result of increasing 435 

CO2 solubility with decreasing sea surface temperatures (Cherel and Hobson 2007, Quillfeldt et 436 

al. 2010, Brault et al. 2018). Thus, the spatial variation in the bulk δ13C values of these two 437 

species likely predominantly reflects the sea surface temperature gradient in the West Antarctic, 438 

with colder temperatures in the higher latitude Amundsen and Ross Sea compared to the warmer, 439 

lower latitude WAP. The difference in sea surface temperatures of the WAP and Ross Sea 440 

(Ducklow et al. 2007, Ducklow et al. 2012, Smith et al. 2014) has been shown to contribute to an 441 

~ 2 ‰ decrease in the δ13Cbaseline between these regions (Brault et al. 2018), similar to the offset 442 

between the WAP and Ross Sea bulk δ13C values that we observe for Weddell and crabeater 443 

seals (2.0 ‰ and 2.1‰, respectively). 444 

Weddell and crabeater seals showed different spatial patterns in their bulk δ15N values 445 

across West Antarctica. Weddell seals showed no spatial patterns in bulk δ15N values across the 446 

study region, Crabeater seals had significantly lower bulk δ15N values in the WAP than the 447 

Amundsen and Ross Seas. A spatial gradient in δ15Nbaseline in the Southern Ocean has been 448 

detected by previous research, and likely reflects changes in nutrient utilization and primary 449 

productivity (DiFiore et al. 2006, DiFiore et al. 2009, Brault et al. 2018). A lower δ15Nbaseline (~ 2 450 

‰) in the WAP compared to the Amundsen and Ross Seas was found in a study of zooplankton 451 

(Brault et al. 2018); this is similar to the difference observed here between WAP and 452 

Amundsen/Ross Sea crabeater seal δ15NPhe values (1.7 ‰). This difference in δ15Nbaseline values 453 
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appears to reflect the relative proportion of oceanic versus coastal production across the West 454 

Antarctic (DiFiore et al. 2006, DiFiore et al. 2009, Brault et al. 2018). Baseline δ15N values 455 

likely increase from oceanic to coastal areas due to increasing productivity and nutrient 456 

drawdown towards the continent in the summer (DiFiore et al. 2006, DiFiore et al. 2009, Brault 457 

et al. 2018). The WAP, with its narrow shelf, likely has a greater influence from oceanic waters 458 

beyond the continental margin, whereas the Amundsen Sea and Ross Sea have wider, more 459 

productive shelf systems consistent with higher δ15Nbaseline values (Arrigo et al. 1998, 2008, 460 

DiFiore et al. 2006, Smith & Comiso 2008, DiFiore et al. 2009, Alderkamp et al. 2012, Brault et 461 

al. 2018). 462 

Continental shelves in Antarctica are especially productive areas compared to offshore 463 

waters since both light and iron become available for phytoplankton blooms at times of coastal 464 

polynya formation and increased iron inputs from various sources (e.g., melting glaciers) 465 

(Gordon et al. 2000, Alderkamp et al. 2012, Arrigo et al. 2015). Although annual production in 466 

the Amundsen and Ross Seas exceeds that of the WAP (Arrigo et al. 1998, 2008, Smith and 467 

Comiso 2008, Alderkamp et al. 2012), localized regions in the WAP may experience high rates 468 

of primary productivity comparable to those within the Amundsen and Ross Seas. For example, 469 

Schmidt et al. (2003) found that Marguerite Bay in the WAP can be a “hot spot” of productivity, 470 

as revealed by high phytoplankton and zooplankton δ15N values. To date, examinations of 471 

δ15Nbaseline variation in West Antarctica have suggested that it increases from oceanic to coastal 472 

waters, tracking a gradient in productivity and nutrient drawdown (Brault et al. 2018).  473 

While it is likely that the observed spatial differences in Weddell and crabeater seal bulk 474 

δ15N values reflect these δ15Nbaseline gradients, spatial patterns in seal bulk δ15N values could be 475 

related to shifts in diet, δ15Nbaseline values, or both. The δ15NPhe values of Ross, Weddell, and 476 
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crabeater seals, on the other hand, reflect δ15Nbaseline, driven by spatial gradients in nutrient 477 

utilization and primary productivity, without the confounding factor of trophic fractionation. As 478 

such, the spatial changes in δ15Nbaseline in West Antarctica are useful for deducing the relative 479 

foraging habitats of Weddell and crabeater seals. Weddell seals from the WAP to the Ross Sea 480 

consistently have the highest δ15NPhe values (5.7 ± 0.4 ‰ for the WAP and 5.7 ± 0.7 ‰ for the 481 

Amundsen/Ross Sea region, n = 3 in both cases) within the overall range of δ15NPhe for all 482 

Antarctic seal (1.90 ‰ to 6.81 ‰). This suggests that Weddell seals throughout West Antarctica 483 

follow a similar foraging behavior in which they predominantly target the most productive 484 

environments within an area (i.e., highest δ15Nbaseline; Brault et al. 2018). These are likely to be 485 

coastal regions, given our understanding of the West Antarctic δ15Nbaseline gradients. Satellite 486 

tracking data of different seal species in this region support this hypothesis. Costa et al. (2010) 487 

used satellite data to show that in the WAP, Weddell seals (unlike crabeater seals) moved 488 

minimally, foraging almost exclusively in likely highly productive coastal fjords (Schmidt et al. 489 

2003, DiFiore et al. 2006, 2009). Goetz (2015), likewise, found that Weddell seal movements do 490 

not extend beyond the Ross Sea continental shelf.  491 

In contrast to Weddell seals, crabeater δ15NPhe values vary significantly across West 492 

Antarctica, with higher values in the Amundsen and Ross Seas versus the WAP. These data 493 

indicate that crabeater seals have greater foraging habitat flexibility than Weddell seals, and thus 494 

make use of a wider range of productivity regimes. Weddell and crabeater seals also have 495 

significantly different δ15Nbaseline for the WAP, which is not observed for the Amundsen/Ross Sea 496 

region, pointing to environmental heterogeneity in the WAP. Our current knowledge of crabeater 497 

seals indicates that this seal heavily consumes E. superba (Laws 1977, Rau et al. 1992, Burns et 498 

al. 2004, Zhao et al. 2004, Burns et al. 2008, Aubail et al. 2011, Hückstädt et al. 2012a), a krill 499 
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species with a distribution linked to that of sea ice. As a consequence, crabeater seals move on 500 

and off the continental shelf, depending on the krill life cycle stage and seasonal ice cover (Nicol 501 

2006). We hypothesize that crabeater seals move across the heterogeneous environments of the 502 

WAP, at times of the year incorporating the lower off-shelf δ15Nbaseline values, in contrast with 503 

Weddell seals. Such a movement pattern by crabeater seals is supported by the tracking results of 504 

Costa et al. (2010). Since crabeater seals in the Amundsen/Ross Sea region have δ15NPhe values 505 

more similar to those of Weddell seals from this area, the same interpretation would suggest that 506 

crabeater seals in this region stay within the wider and more productive continental shelf areas of 507 

the Amundsen and Ross Seas. Overall, our results indicate that Weddell seals have a strong 508 

preference for productive coastal sites, whereas crabeater seals use more diverse habitats in West 509 

Antarctica, but that their foraging patterns vary by region.  510 

Ross seals sampled in the Amundsen/Ross Seas had significantly lower δ15NPhe values 511 

than both Weddell and crabeater seals from this region (Fig. 4). This result suggests that Ross 512 

seals are foraging in a different region from the other two species. These low δ15Nbaseline values 513 

coupled with our current understanding of the West Antarctic δ15Nbaseline gradient (Brault et al. 514 

2018) strongly suggest that Ross seals are likely feeding much further offshore than Weddell and 515 

crabeater seals, largely in the oceanic region of the Southern Ocean that experiences low nutrient 516 

drawdown and low productivity relative to coastal areas (DiFiore et al. 2006, DiFiore et al. 2009, 517 

Jaeger et al. 2010, Somes et al. 2010). 518 

Prior research supports our hypothesis that Ross seals are largely oceanic feeders. For 519 

example, Blix and Nordøy (2007) examined the foraging behavior of Ross seals via satellite-520 

linked dive recorders. The tags tracked the movements of 10 adult Ross seals captured off Queen 521 

Maud Land (East Antarctica) just after their molt in February 2001. The animals migrated 2,000 522 
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km north to pelagic waters south of the Antarctic Polar Front. These Ross seals stayed in that 523 

area until October when they traveled south into the pack ice (Blix and Nordøy 2007). Similarly, 524 

Arcalís-Planas et al. (2015) showed that Ross seals minimally use sea ice, hauling out for only 525 

short periods each year to molt (December to January) and breed (late October to mid-526 

November). They report that Ross seals are moving from 587 to 1,282 km off the ice edge during 527 

much of the year (Arcalís-Planas et al. 2015). The low δ15Nbaseline value measured in our study 528 

represents independent evidence that Ross seals are indeed are spending the majority of each 529 

year foraging in less productive, oceanic waters, separate from the more coastal food webs of the 530 

crabeater and Weddell seals.  531 

 532 

Reevaluating trophic dynamics of Antarctic Seals 533 

Differences in regional foraging habitat utilization among seals, indicated by δ15Nphe 534 

between Ross seals versus crabeater and Weddell seals (~ 3 ‰), suggest the need for a 535 

reevaluation of the TP and associated food web ecology for Ross seals. Our compound-specific 536 

approach allowed us to calculate trophic positions of these Antarctic seals that were internally 537 

indexed to δ15Nbaseline. We found that Ross seals had TPCSI-AA values similar to those of Weddell 538 

seals, both of which were significantly higher than crabeater seals. This result differed from 539 

previous conclusions based on bulk δ15N values, which suggested that Ross seals were at an 540 

intermediate trophic position between crabeater and Weddell seals (Rau et al. 1992, Zhao et al. 541 

2004, Aubail et al. 2011). Our results suggest that, like Weddell seals, Ross seals are 542 

predominantly feeding on high trophic level prey, such as mid-to-deep water fish and squid, and 543 

that lower trophic level prey (e.g., E. superba) are not a major part of their diets. This conclusion 544 

is supported by dive records, which indicate that Ross seals forage at depths associated with 545 
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capturing mesopelagic squid and fish (Bengtson and Stewart 1997, Blix and Nordøy 2007), and 546 

corroborate limited stomach content analyses that have reported Antarctic silverfish and glacial 547 

squid comprising their diets in varying proportions (Skinner and Klages, 1994).  548 

 Our compound-specific isotope approach to trophic dynamics also revealed significant 549 

spatial variation in the trophic dynamics of crabeater seals across West Antarctica. The TPCSI-AA 550 

value of crabeater seals decreases by approximately 0.5 from the WAP to the Amundsen/Ross 551 

Sea region, which is substantial for a low trophic level consumer like the crabeater seal that is 552 

thought to specialize on krill. Variations of this range have been shown to be significant in many 553 

past studies (e.g., McCarthy et al. 2007; Batista et al. 2014), with recent ecological work 554 

showing that TPCSI-AA variation as small as 0.2 to 0.3 indicates real ecological change (Ostrom et 555 

al. 2017). This pattern is not likely driven by differences in age class across regions as all but one 556 

crabeater seal from both regions were adults. The WAP has been experiencing increased krill 557 

fishing pressure, a resurgence in baleen whales (competitors for krill), and dramatic reductions in 558 

sea ice extent as a function of rapid regional warming, all of which have negative effects on E. 559 

superba abundance (Ducklow et al. 2007, Trivelpiece et al. 2011, Ducklow et al. 2012, Nicol et 560 

al. 2012). Perhaps these environmental changes have decreased the availability of krill for 561 

crabeater seals in this area, causing crabeater seals to supplement their diet with fish in the WAP 562 

relative to the Amundsen/Ross Sea region.  563 

Alternatively, the regional differences in crabeater seal TPCSI-AA values could be the 564 

result of bottom-up effects. Prior research has shown omnivorous behaviors by E. superba in the 565 

WAP and Drake Passage regions, possibly contributing to a higher euphausiid TP in this region 566 

than other areas of the Antarctic (Schmidt et al. 2006). However, euphausiid omnivory in the 567 

Ross Sea has also been suggested (Hopkins 1987, Pinkerton et al. 2010), and it is possible that 568 
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omnivory by this taxon varies in time and space (Schmidt et al. 2006). Given these uncertainties, 569 

it is not possible to definitively assess the relative roles of shifts in diet versus krill omnivory to 570 

our observed spatial gradient of crabeater seal TPCSI-AA.  571 

 572 

CONCLUSIONS 573 

 574 

 Our work using bulk and amino acid isotope analyses revealed significant variability in 575 

the foraging habitats and trophic dynamics of three important Antarctic seal species in the West 576 

Antarctic. Ross seals are foraging in a low productivity, oceanic food web far offshore from that 577 

of crabeater and Weddell seals. Crabeater and Weddell seals are foraging within similar food 578 

webs closer to shore, but isotopic data suggest that crabeater seals are likely following sea ice to 579 

capture E. superba, while Weddell seals target the most productive, near-shore areas within the 580 

western Antarctic to take prey. In addition, our CSI-AA data revealed that Ross seals occupy a 581 

higher trophic position than originally thought, equivalent to Weddell seals and greater than that 582 

of crabeater seals. Additionally, since bulk isotope-based TP estimates are unable to account for 583 

varying baseline δ15N values, we hypothesize that the strong baseline changes across the 584 

environments inhabited by these species are responsible for this underestimate of TP. This study 585 

will begin to reshape our understanding of Ross seal foraging ecology while also highlighting the 586 

challenges and potential solutions to accounting for variability in baseline and trophic dynamics 587 

when interpreting consumer isotope data in studies of foraging ecology. 588 

  589 
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FIGURES 881 

 882 

 883 

 884 
Fig. 1. Bulk δ15N values versus δ13C values for Ross seals (green circles), Weddell (blue squares), and 885 
crabeater (orange triangles) in the West Antarctic. 886 
  887 
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 888 

 889 
Fig. 2. Spatial variation in δ13C (a) and δ15N (b) values of Weddell seals. Figures were produced in Ocean 890 
Data View 4.7.4 (Schlitzer 2015). 891 
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 893 

 894 
Fig. 3. Spatial variation in δ13C (a) and δ15N (b) values of crabeater seals. Figures were produced in Ocean 895 
Data View 4.7.4 (Schlitzer 2015). 896 
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 898 
Fig. 4. Mean δ15N values (± 1 SD) of amino acids for Ross (green circles), Weddell (blue squares), and 899 
crabeater (orange triangles) seals. Significant differences (p < 0.05) among species for an amino acid 900 
are indicated with asterisks. Amino acids are divided into trophic and source amino acids, with Gly and 901 
Ser separate given uncertainty in their classification for marine mammals (McMahon and McCarthy 902 
2016). 903 
  904 
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 905 

 906 
Fig. 5. Spatial variation in δ15N values of Pro (a) and Phe (b) values for crabeater seals. Figures were 907 
produced in Ocean Data View 4.7.4 (Schlitzer 2015). 908 
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 910 
Fig. 6. Comparison of δ15N values (mean ± 1 SD) of Pro, bulk material, and Phe for crabeater seals. Dark 911 
orange circles, medium orange triangles, light orange squares represent Pro, bulk, and Phe δ15N values, 912 
respectively. Bulk δ15N values represent whole blood, with corrections applied if the given sample type 913 
analyzed was not whole blood. 914 
 915 
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 916 
Fig. 7. Trophic position estimates (mean ± 1 SD) for crabeater, Ross, and Weddell seals from the 917 
Amundsen and Ross Seas. Trophic positions were calculated based on Pro and Phe δ15N values. 918 
 919 
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SUPPLEMENTAL MATERIAL 2 

 3 

Relationships of bulk δ13C and δ15N values with gender, sampling period, age class, and 4 

body mass of the Antarctic seals 5 

Sampling period, gender, and age class have no significant effects on the bulk δ13C 6 

values of Ross Seals (Figs. S5 and S6). However, there is a significant, but weak negative 7 

relationship between body mass and δ13C values (R2 value of 0.3 from a linear regression 8 

analysis, Fig. S6). Sampling period, gender, age class, and body mass all have no significant 9 

effects on the bulk δ15N values of Ross seals (Figs. S5 and S6). 10 

For Weddell seals, sampling period, gender, and body mass have no significant effects on 11 

bulk δ13C values (Figs. S7 and S8). Adult Weddell seals have significantly higher bulk δ13C 12 

values (-24.9 ± 0.6 ‰, n=93) than juveniles (-25.2 ± 0.6 ‰, n=17) and subadults (-25.4 ± 0.5 ‰, 13 

n=15) (p = 0.002 in both cases). Sampling period, gender, and body mass have no significant 14 

effects on bulk δ15N values (Figs. S7, and S8). However, Weddell bulk δ15N values are 15 

significantly lower in subadults (11.9 ± 0.7 ‰, n=15) than juveniles (12.6 ± 0.6 ‰, n=17) and 16 

adults (12.3 ± 0.6 ‰, n=93) (p-values of 0.02 and 0.004, correspondingly, from Bonferroni post-17 

hoc comparisons) (Fig. S7). 18 

Crabeater seal δ13C values are not affected significantly by sampling period or gender 19 

(Fig. S9). Adult crabeater seals have significantly higher δ13C values (-24.6 ± 1.3 ‰, n=76) than 20 

subadults (-26.3 ± 0.2 ‰, n=10) and juveniles (-26.2 ± 0.4 ‰, n=11) from Bonferroni post-hoc 21 

comparisons (p<0.001 in both cases) (Fig. S9). Additionally, crabeater seal δ13C values increase 22 

significantly with increasing body mass (R2 value of 0.4 from a linear regression analysis) (Fig. 23 
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S10). The δ15N values of crabeater seals do not vary significantly with gender (Fig. S9). One 24 

significant difference occurs across sampling periods: Amundsen Sea δ15N values are 25 

significantly higher for the austral summer 2007/08 sampling (8.1 ± 0.4 ‰, n = 14) than the 26 

austral summer 2010/11 sampling (7.3 ± 0.6 ‰, n = 21) (p<0.001 from Bonferroni post-hoc 27 

comparisons). Adult crabeater seals have significantly lower δ15N values (7.0 ± 0.8 ‰, n = 76) 28 

than subadult animals (8.3 ± 0.4 ‰, n = 10, p<0.0001 for the Bonferroni post-hoc comparison) 29 

and juvenile seals (7.8 ± 0.3 ‰, n = 11, p = 0.01 for the Bonferroni post-hoc comparison) (Fig. 30 

S9). The δ15N values significantly increase with decreasing body mass (Fig. S10, R2 value of 0.4 31 

from a linear regression analysis).  32 

Discussion of relationships of bulk isotope values with gender, sampling period, age class, 33 

and body mass of the Antarctic seals 34 

Our Ross seal bulk δ13C and δ15N results suggest a similar diet and foraging region across 35 

different genders and age classes. In contrast, the significant relationship between body mass and 36 

δ13C (increasing δ13C values with decreasing body mass) suggests that Ross seals of different 37 

sizes are foraging in slightly different areas. However, no significant relationship exists between 38 

body mass and phenylalanine (Phe) δ15N value for Ross seals, which varies across different 39 

environments as described in the main text. Zhao et al. (2004) found no significant effects of age 40 

or sex on Ross seal δ13C and δ15N values.  41 

Our Weddell and crabeater seal results show no significant effects of gender on δ13C and 42 

δ15N values, indicating that foraging area and diet do not differ across genders for these species. 43 

This finding is consistent with the results of Zhao et al. (2004) and Burns et al. (1998) for 44 

crabeater and Weddell seals, respectively. However, Zhao et al. (2004) reported that male 45 

Weddell seals have significantly higher δ13C and δ15N values than females.  46 
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Weddell seal bulk δ13C values of adults are significantly higher than those of juveniles 47 

and subadults, suggesting that these animals vary their foraging region with age. In contrast, 48 

Zhao et al. (2004) and Aubail et al. (2011) found no significant variation in bulk δ13C values 49 

across Weddell seal age classes. However, Goetz et al. (2017) found increasing δ13C values with 50 

age for Weddell seals from analysis of red blood cells (RBC), consistent with our finding. Our 51 

results point to adult crabeater seals foraging in a different area than subadults and juveniles, 52 

perhaps further offshore given their higher δ13C values, as well as the positive relationship 53 

between body mass and δ13C value for this species. Likewise, Aubail et al. (2011) found 54 

significantly higher δ13C values in crabeater adults than juveniles, and Hückstädt et al. (2012) 55 

found δ13C values significantly increasing with increasing crabeater seal body mass. In contrast, 56 

Zhao et al. (2004) found no significant variability in δ13C values across age groups. 57 

In this study, both Weddell and crabeater seals have significant variability in δ15N values 58 

across age classes. For crabeater seals, our finding of significantly lower δ15N values in adults 59 

than juveniles is supported by the results of Aubail et al. (2011). The observed bulk isotope 60 

variation for Weddell and crabeater seals in this study could have resulted from differences in 61 

foraging regions, diet, or both between the various age classes. We did not attempt to explore the 62 

drivers of δ15N variations across age classes of Weddell and crabeater seals further in our 63 

compound-specific isotope analysis of amino acids (CSI-AA) since limitations entailed in this 64 

analysis (i.e., expense and extensive laboratory processing) did not allow for aminio acid δ15N 65 

measurements from a sufficient number of samples for such an investigation. For Weddell seals, 66 

we only conducted CSI-AA on tissues from adults. We performed CSI-AA on one subadult and 67 

five adults for crabeater seals. The subadult had a higher Phe δ15N value (6.8 ‰) relative to that 68 

of the adults (5.6 ± 0.3 ‰) for the Amundsen/Ross sea region. The nitrogen isotope values of Pro 69 



Antarctic Seal Foraging Ecology 

 4 

and Glu for the subadult (15.7 ‰ and 15.1 ‰, respectively) were slightly higher than Pro and 70 

Glu δ15N values of adults (15.2 ± 0.8 ‰ and 14.7 ± 0.5 ‰) for the Amundsen and Ross Seas. 71 

This result indicates the higher bulk δ15N values of subadult than adult crabeater seals may be 72 

driven by the former using a habitat with moderately higher baseline δ15N values and, perhaps, 73 

nitrogen drawdown than the latter. However, CSI-AA must be conducted on considerably more 74 

crabeater seal samples before δ15N variation across age classes can be clearly established and the 75 

possible causes can be identified.  76 

The results of other studies measuring bulk δ15N values of Weddell and crabeater seals 77 

differed from our findings. Goetz et al. (2017) found increasing δ15N values with increasing 78 

Weddell seal age. Zhao et al. (2004) compared δ15N values of Weddell seal pups, juveniles, 79 

subadults, and adults, and found only one significant result: adults have higher δ15N values than 80 

subadults. Aubail et al. (2011) reported no significant difference across Weddell seal age groups, 81 

which included juveniles and adults. For crabeater seals, Zhao et al. (2004) found no significant 82 

variability in δ15N values of pups, juveniles, subadults, and adults. Overall, the effects of age, as 83 

well as gender, on the isotopic values of crabeater and Weddell seals vary across the research to 84 

date. Furthermore, isotope baseline variability may contribute to the differences in bulk isotope 85 

values across age groups or genders, as mentioned above and discussed in detail in the main text.   86 

 87 

 88 
 89 

 90 

 91 

  92 
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 93 

 94 
Fig. S1. Spatial variation in bulk δ13C (a) and δ15N (b) values of Ross seals. Figures were produced in 95 
Ocean Data View 4.7.4 (Schlitzer 2015). 96 
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 98 
Fig. S2. δ15N values (mean ± 1 standard deviation) of threonine for Ross, Weddell, and crabeater seals. 99 
Species are shown with colors: blue squares for Weddell seals, orange triangles for crabeater seals, and 100 
green circles for Ross seals. 101 
 102 
  103 
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 104 

 105 
Fig. S3. Spatial variation in δ15N values of Pro (a) and Phe (b) values for Ross seals. Figures were produced 106 
in Ocean Data View 4.7.4 (Schlitzer 2015). 107 
  108 

(a) 

δ1
5 N

, ‰
 A

IR
  

(b) 

δ1
5 N

, ‰
 A

IR
  



Antarctic Seal Foraging Ecology 

 8 

 109 

 110 
Fig. S4. Spatial variation in δ15N values of Pro (a) and Phe (b) values for Weddell seals. Figures were 111 
produced in Ocean Data View 4.7.4 (Schlitzer 2015). 112 
 113 
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 115 
Fig. S5. Bulk δ13C and δ15N for Ross Seals. Age class and gender are indicated with colors (light green 116 
for subadults and dark green for adults) and shapes (triangles and circles for males and females, 117 
correspondingly).  118 
  119 



Antarctic Seal Foraging Ecology 

 10 

 120 

 121 

 122 
Fig. S6. Mass (kg) versus bulk δ13C (a) and δ15N (b) values for Ross 123 
Seals.  124 
 125 
 126 
 127 
 128 
 129 
 130 
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 131 
Fig. S7. Bulk δ13C and δ15N for Weddell Seals. Age class and gender are indicated with colors (light 132 
blue for juveniles, medium blue for subadults, and dark blue for adults) and shapes (triangles, circles, 133 
and squares for males, females, and unknown sex, correspondingly).  134 
  135 
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 136 

 137 
Fig. S8. Mass (kg) versus bulk δ13C (a) and δ15N (b) values of Weddell 138 
Seals.  139 
 140 
  141 
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 142 
Fig. S9. Bulk δ13C and δ15N for Crabeater Seals. Age class and gender are indicated with colors (light 143 
orange for juveniles, medium orange for subadults, and dark orange for adults) and shapes (triangles, 144 
circles, and squares for males, females, and unknown sex, correspondingly). 145 
  146 
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 147 

 148 

 149 
Fig. S10. Mass (kg) versus bulk δ13C (a) and δ15N (b) values of 150 
crabeater Seals.  151 
  152 



Antarctic Seal Foraging Ecology 

 15 

Table S1. Sample information for Antarctic Seals. In cases where multiple sample types were obtained 153 
from a seal, we indicate the tissue from which isotopic values were used in figures and statistical 154 
analyses. Negative latitude and longitude indicate degrees south and west, respectively. Abbreviations: 155 
DD, decimal degrees; WB, whole blood; RBCs, red blood cells; F, female; M, male; na, information not 156 
available; Su, summer; Sp, spring; F, fall; W, winter; Oden, RV Oden cruises; MCM, McMurdo Station 157 
region; WAP, West Antarctic Peninsula area; Ad, adult; Sub, subadult; Juv, juvenile; Lat, latitude; Long, 158 
longitude. 159 

Species Sample 
ID Source Season Sample 

Type 
Age 

Class Sex Weight 
(kg) 

Lat 
(DD) 

Long  
(DD) 

Crabeater C02 Oden Su 
2010/11 Clot Ad F 163 -68.6 -102.3 

 C03 Oden Su 
2008/09 WB Sub F na -70.6 -107.0 

 C03 Oden Su 
2010/11 Clot Ad F 210 -68.6 -102.5 

 C04 Oden Su 
2008/09 WB Sub M 92 -70.6 -107.0 

 C06 Oden Su 
2008/09 WB Sub M 76 -71.1 -110.5 

 C07 Oden Su 
2008/09 WB Sub F 92 -71.1 -110.5 

 C07 Oden Su 
2010/11 Hair Ad F 205 -69.5 -103.7 

 C10 Oden Su 
2010/11 Hair Ad F 225.4 -69.5 -103.7 

 C11 Oden Su 
2010/11 Hair Ad F 264 -69.5 -103.7 

 C14 Oden Su 
2010/11 Clot Ad F 215 -70.1 -107.4 

 C15 Oden Su 
2010/11 WB Sub M 170 -70.1 -107.4 

 C20 Oden Su 
2008/09 WB Ad M 190 -72.6 -116.0 

 C20 Oden Su 
2010/11 RBCs Juv M 90 -72.7 -114.2 

 C21 Oden Su 
2008/09 Clot Sub M 112 -72.6 -116.0 

 C21 Oden Su 
2010/11 RBCs Juv M 103 -72.7 -114.2 

 C22 Oden Su 
2008/09 Clot Sub M 113 -72.6 -116.0 

 C32 Oden Su 
2008/09 WB Ad F 230 -70.2 -119.9 

 C33 Oden Su 
2008/09 WB Ad M 194 -70.2 -119.9 

 C43 Oden Su 
2008/09 WB Ad F 190 -69.4 -125.3 

 C44 Oden Su 
2008/09 WB Ad M 182 -69.4 -125.3 

 C45 Oden Su 
2008/09 WB Ad F 230 -70.2 -133.5 

 C46 Oden Su 
2008/09 WB Sub F 90 -72.5 -146.5 

 C47 Oden Su 
2008/09 WB Ad M 192 -74.4 -150.7 

 C48 Oden Su 
2008/09 WB Ad F 177 -74.4 -150.7 

 C50 Oden Su 
2008/09 WB Sub M 84 -75.4 -151.3 
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 C51 Oden Su 
2008/09 WB Ad F 210 -75.4 -151.3 

 C52 Oden Su 
2008/09 WB Ad F 183 -75.4 -151.3 

 C143 Oden Su 
2010/11 WB Juv F 105 -72.1 -119.7 

 C144 Oden Su 
2010/11 WB Juv F 118 -72.1 -119.7 

 C153 Oden Su 
2010/11 WB Ad M 192 -72.1 -123.5 

 C154 Oden Su 
2010/11 WB Ad M 177 -72.1 -123.5 

 C155 Oden Su 
2010/11 Hair Juv M 108 -72.2 -126.7 

 C156 Oden Su 
2010/11 WB Juv M 123 -72.2 -126.7 

 C157 Oden Su 
2010/11 WB Juv F 113 -72.2 -126.7 

 C158 Oden Su 
2010/11 WB Juv F 89 -72.2 -126.7 

 C173 Oden Su 
2010/11 WB Ad F 209 -72.8 -135.6 

 C174 Oden Su 
2010/11 WB Ad M 175 -75.3 -139.5 

 C175 Oden Su 
2010/11 Hair Ad F 215 -73.3 -139.5 

 C176 Oden Su 
2010/11 WB Ad M 205 -73.3 -139.5 

 C177 Oden Su 
2010/11 WB Ad M 194 -75.8 -150.0 

 Cr 1 MCM Su 
2009/10 Hair Juv na na -77.6 166.2 

 Cr 
Royds MCM Su 

2009/10 Hair Juv na na -77.6 166.2 

 Cr 2 MCM Su 
2009/10 Hair Juv na na -77.6 166.2 

 CS11-
01 MCM Su 

2010/11 WB Ad na na -77.7 166.5 

 
G001 

Hückstädt 
et al. 

(2012a) 
F 2001 Whisker Ad F na -67.3 -67.6 

 
G003 

Hückstädt 
et al. 

(2012a) 
F 2001 Whisker Ad F 258 -67.3 -67.6 

 
G004 

Hückstädt 
et al. 

(2012a) 
F 2001 Whisker Ad M 342 -69.2 -72.3 

 
G005 

Hückstädt 
et al. 

(2012a) 
F 2001 Whisker Ad F 293 -69.3 -72.4 

 
G006 

Hückstädt 
et al. 

(2012a) 
F 2001 Whisker Ad F 413 -69.3 -72.5 

 
G007 

Hückstädt 
et al. 

(2012a) 
F 2001 Whisker Ad M 287 -69.3 -72.5 
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G008 

Hückstädt 
et al. 

(2012a) 
F 2001 Whisker Ad F 355 -69.1 -72.4 

 
G009 

Hückstädt 
et al. 

(2012a) 
W 2001 Whisker Ad M 179 -67.7 -69.3 

 
G010 

Hückstädt 
et al. 

(2012a) 
W 2001 Whisker Ad F 307 -68.1 -70.4 

 
G012 

Hückstädt 
et al. 

(2012a) 
W 2001 Whisker Ad F 288 -68.1 -70.2 

 
G013 

Hückstädt 
et al. 

(2012a) 
W 2001 Whisker Ad M 234 -68.1 -70.2 

 
G014 

Hückstädt 
et al. 

(2012a) 
W 2001 Whisker Ad M 284 -68.1 -70.1 

 
G015 

Hückstädt 
et al. 

(2012a) 
W 2001 Whisker Ad M 234 -67.2 -70.2 

 
G016 

Hückstädt 
et al. 

(2012a) 
W 2001 Whisker Ad F 273 -67.4 -70.9 

 
G017 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad F 118 -66.4 -66.8 

 
G018 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad M 157 -66.8 -66.8 

 
G019 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad F 156 -66.8 -66.8 

 
G020 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad M 143 -66.6 -67.5 

 
G021 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad M 271 -66.6 -67.5 

 
G022 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad F 268 -67.4 -67.7 

 
G023 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad M 174 -67.6 -68.2 

 
G024 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad F 256 -67.6 -69.0 

 
G026 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad F 266 -67.6 -69.0 

 
G027 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad M 226 -66.6 -67.5 
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G028 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad F 314 -68.5 -69.8 

 
G029 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad M 242 -68.7 -70.0 

 
G030 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad M 250 -66.6 -67.5 

 
G031 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad F 385 -66.3 -66.6 

 
G032 

Hückstädt 
et al. 

(2012a) 
F 2002 Whisker Ad F 230 -68.8 -69.9 

 
G033 

Hückstädt 
et al. 

(2012a) 
W 2002 Whisker Ad F 268 -66.3 -66.7 

 
G034 

Hückstädt 
et al. 

(2012a) 
W 2002 Whisker Ad F 295 -66.5 -67.1 

 
G035 

Hückstädt 
et al. 

(2012a) 
W 2002 Whisker Ad F 238 -66.4 -66.9 

 
G036 

Hückstädt 
et al. 

(2012a) 
W 2002 Whisker Ad F 207 -66.4 -66.9 

 
G038 

Hückstädt 
et al. 

(2012a) 
W 2002 Whisker Ad M 273 -67.2 -70.6 

 
G039 

Hückstädt 
et al. 

(2012a) 
W 2002 Whisker Ad M 247 -68.6 -76.0 

 
G040 

Hückstädt 
et al. 

(2012a) 
W 2002 Whisker Ad M 302 -68.5 -75.8 

 
G041 

Hückstädt 
et al. 

(2012a) 
W 2002 Whisker Ad M 269 -68.1 -75.0 

 
G042 

Hückstädt 
et al. 

(2012a) 
W 2002 Whisker Ad M 224 -68.0 -74.9 

 
G043 

Hückstädt 
et al. 

(2012a) 
W 2002 Whisker Ad M 224 -68.0 -74.8 

 
G044 

Hückstädt 
et al. 

(2012a) 
W 2002 Whisker Ad F 280 -65.7 -68.7 

 
G045 

Hückstädt 
et al. 

(2012a) 
W 2002 Whisker Ad F 221 -65.6 -68.6 

 
G046 

Hückstädt 
et al. 

(2012a) 
W 2002 Whisker Ad M 237 -65.5 -68.5 
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G047 

Hückstädt 
et al. 

(2012a) 
W 2002 Whisker Ad M 254 -65.7 -68.5 

 
G102 

Hückstädt 
et al. 

(2012a) 
F 2007 Whisker Ad F 286 -67.2 -66.9 

 
G104 

Hückstädt 
et al. 

(2012a) 
F 2007 Whisker Ad F 197 -67.2 -66.9 

 
G105 

Hückstädt 
et al. 

(2012a) 
F 2007 Whisker Ad F 251 -67.2 -66.8 

 
G106 

Hückstädt 
et al. 

(2012a) 
F 2007 Whisker Ad F 207 -67.2 -66.8 

 
G107 

Hückstädt 
et al. 

(2012a) 
F 2007 Whisker Ad F 315 -67.0 -67.4 

 
G108 

Hückstädt 
et al. 

(2012a) 
F 2007 Whisker Ad F 207 -67.2 -66.8 

 
G110 

Hückstädt 
et al. 

(2012a) 
F 2007 Whisker Ad F 123 -67.1 -66.8 

 
G112 

Hückstädt 
et al. 

(2012a) 
F 2007 Whisker Ad F 252 -65.2 -64.2 

 
G113 

Hückstädt 
et al. 

(2012a) 
F 2007 Whisker Ad F 244 -66.1 -65.4 

 W02 Oden Su 
2008/09 WB Sub M 113 -71.7 -112.2 

Weddell W01 Oden Su 
2010/11 Hair Ad M 251 -72.6 -115.1 

 W02 Oden Su 
2010/11 Hair Ad F 300 -72.6 -115.1 

 W04 Oden Su 
2010/11 Clot Ad F 400 -72.8 -114.4 

 W06 Oden Su 
2010/11 Clot Ad M 400 -72.9 -114.2 

 W10 Oden Su 
2008/09 WB Sub F 156 -77.3 -165.5 

 W11 Oden Su 
2008/09 WB Sub M 153 -77.3 -165.5 

 W12 Oden Su 
2008/09 WB Ad M 318 -77.3 -165.5 

 W14 Oden Su 
2008/09 WB Ad M 288 -77.3 -165.5 

 W15 Oden Su 
2008/09 WB Sub M 211 -77.3 -165.5 

 W17 Oden Su 
2008/09 WB Ad M 278 -77.3 -165.5 

 W19 Oden Su 
2008/09 WB Ad F 309 -77.3 -165.5 

 W103 Oden Su 
2010/11 WB Ad M 300 -72.6 -115.1 
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 W112 Oden Su 
2010/11 Hair Ad M 350 -72.9 -114.0 

 W113 Oden Su 
2010/11 WB Ad M 255 -72.9 -114.0 

 W116 Oden Su 
2010/11 WB Ad M 300 -71.7 -115.5 

 W117 Oden Su 
2010/11 WB Ad F 290 -71.7 -115.5 

 W118 Oden Su 
2010/11 WB Ad F 216 -71.7 -115.5 

 W130 Oden Su 
2010/11 WB Sub M 158 -72.5 -116.6 

 W133 Oden Su 
2010/11 WB Ad M 300 -72.5 -116.6 

 W136 Oden Su 
2010/11 WB Ad F 235 -72.9 -116.9 

 W137 Oden Su 
2010/11 WB Ad F 243 -72.9 -116.9 

 W155 Oden Su 
2010/11 WB Juv F 155 -72.1 -119.2 

 W157 Oden Su 
2010/11 WB Juv F 108 -72.1 -119.2 

 W174 Oden Su 
2010/11 WB Ad F 250 -72.1 -119.7 

 W175 Oden Su 
2010/11 WB Ad M 300 -72.1 -119.7 

 W176 Oden Su 
2010/11 WB Ad M na -72.1 -119.7 

 W177 Oden Su 
2010/11 WB Ad M 234 -72.1 -119.7 

 W182 Oden Su 
2010/11 Hair Sub M 215 -72.8 -135.8 

 W185 Oden Su 
2010/11 WB Ad F 400 -75.5 -184.9 

 W186 Oden Su 
2010/11 WB Sub F 154 -75.5 -184.9 

 W208 Oden Su 
2010/11 WB Sub M 135 -78.7 -164.2 

 W209 Oden Su 
2010/11 WB Juv M 61 -78.7 -164.2 

 W214 Oden Su 
2010/11 WB Sub F 184 -77.6 -166.3 

 W216 Oden Su 
2010/11 WB Juv F 91 -77.6 -166.3 

 W219 Oden Su 
2010/11 WB Sub F 237 -77.7 -164.7 

 W220 Oden Su 
2010/11 WB Ad F 261 -77.7 -164.7 

 W222 Oden Su 
2010/11 WB Ad M 350 -77.7 -164.7 

 W223 Oden Su 
2010/11 WB Juv M 90 -77.7 -164.7 

 WS10-
11 MCM Su 

2009/10 RBCs Ad F 308.5 -75.8 162.8 

 WS10-
12 MCM Su 

2009/10 RBCs Ad F 282.5 -75.8 162.8 

 WS10-
13 MCM 

Su 
2009/10 RBCs Ad F 245 -75.8 162.8 
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 WS10-
17 MCM Su 

2009/10 RBCs Ad F 356 -76.5 162.8 

 WS10-
18 MCM Su 

2009/10 RBCs Ad F 265 -76.5 162.8 

 WS11-
11 MCM Su 

2010/11 WB Ad F 281 -76.6 162.7 

 WS11-
12 MCM Su 

2010/11 WB Ad F 355 -77.9 166.8 

 WS11-
13 MCM Su 

2010/11 WB Ad F 247 -76.9 162.5 

 WS11-
14 MCM Su 

2010/11 WB Ad F 286 -76.6 162.7 

 WS11-
15 MCM Su 

2010/11 WB Ad F 195 -77.2 163.5 

 WS12-
11 MCM Su 

2011/12 RBCs Ad F 273 -76.9 162.8 

 WS12-
12 MCM Su 

2011/12 RBCs Ad F 374 -77.9 166.8 

 WS12-
13 MCM Su 

2011/12 RBCs Ad F 410 -77.9 166.8 

 WS12-
14 MCM Su 

2011/12 RBCs Ad M 227 -76.1 162.4 

 WS12-
15 MCM Su 

2011/12 RBCs Ad M 289 -76.5 162.7 

 WS12-
22 MCM Sp 

2012 WB Ad F 451 -77.7 166.5 

 WS12-
23 MCM Sp 

2012 WB Ad F 442 -77.7 166.9 

 WS12-
24 MCM Sp 

2012 WB Ad F 339 -77.7 166.8 

 WS12-
25 MCM Sp 

2012 WB Ad F 355 -77.7 166.9 

 WS12-
26 MCM Sp 

2012 WB Ad F 408 -77.7 166.7 

 G103 WAP F 2007 Serum Ad F 306 -67.2 -66.9 
 G111 WAP F 2007 Plasma Ad F 280 -67.1 -66.8 
 LW11-

03 MCM Su 
2010/11 WB Juv na na -74.9 163.7 

 LW11-
05 MCM Su 

2010/11 WB Juv na na -74.9 163.7 

 LW11-
06 MCM Su 

2010/11 WB Juv na na -74.9 163.7 

 LW11-
07 MCM Su 

2010/11 WB Juv na na -74.9 163.7 

 LW11-
08 MCM Su 

2010/11 WB Juv na na -74.9 163.7 

 LW11-
09 MCM Su 

2010/11 WB Juv na na -74.9 163.7 

 LW11-
10 MCM Su 

2010/11 WB Juv na na -74.9 163.7 

 LW11-
11 MCM Su 

2010/11 WB Juv na na -74.9 163.7 

 LW11-
12 MCM Su 

2010/11 WB Juv na na -74.9 163.7 

 LW11-
13 MCM 

Su 
2010/11 WB Juv na na -74.9 163.7 
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 LW11-
14 MCM Su 

2010/11 WB Juv na na -74.9 163.7 

 LW11-
15 MCM Su 

2010/11 WB Juv na na -74.9 163.7 

 LW15-
01 MCM Sp 

2015 WB Ad M 300 -77.8 166.8 

 LW15-
02 MCM Sp 

2015 WB Sub M 280 -77.8 166.8 

 LW15-
03 MCM Sp 

2015 WB Ad M 300 -77.8 166.8 

 LW15-
04 MCM Sp 

2015 WB Ad M 300 -77.8 166.8 

 LW15-
05 MCM Sp 

2015 WB Ad M 300 -77.8 166.8 

 LW15-
06 MCM Sp 

2015 WB Ad M 300 -77.7 166.4 

 LW15-
07 MCM Sp 

2015 WB Ad F 350 -77.7 166.4 

 LW15-
08 MCM Sp 

2015 WB Sub F 250 -77.8 166.8 

 LW15-
09 MCM Sp 

2015 WB Sub F 275 -77.7 166.3 

 LW15-
10 MCM Sp 

2015 WB Sub M 230 -77.7 166.4 

 LW15-
11 MCM Sp 

2015 WB Sub F 250 -77.7 166.4 

 LW15-
12 MCM Sp 

2015 WB Sub M 200 -77.7 166.4 

 W006 WAP Su 
2009/10 Whisker Ad M 293 -62.5 -60.8 

 W013 WAP Su 
2009/10 Whisker Ad F 293 -62.5 -60.8 

 WS10-
01 

Goetz et 
al. (2017) 

Su 
2009/10 

Whisker Ad F 327 -77.8 166.8 

 WS10-
02 

Goetz et 
al. (2017) 

Su 
2009/10 

Whisker Ad F 378 -77.7 166.8 

 WS10-
03 

Goetz et 
al. (2017) 

Su 
2009/10 

Whisker Ad F 214 -77.7 166.7 

 WS10-
04 

Goetz et 
al. (2017) 

Su 
2009/10 

Whisker Ad F 195 -77.7 166.7 

 WS10-
05 

Goetz et 
al. (2017) 

Su 
2009/10 

Whisker Ad F 271 -77.7 166.7 

 WS10-
06 

Goetz et 
al. (2017) 

Su 
2009/10 

Whisker Ad M 271 -77.6 166.2 

 WS10-
07 

Goetz et 
al. (2017) 

Su 
2009/10 

Whisker Ad F 234 -77.7 166.7 

 WS10-
19 

Goetz et 
al. (2017) 

Su 
2009/10 

Whisker Ad M 184 -76.6 162.7 

 WS10-
20 

Goetz et 
al. (2017) 

Su 
2009/10 

Whisker Ad M 181 -76.6 162.7 

 WS10-
21 

Goetz et 
al. (2017) 

Su 
2009/10 

Whisker Ad F 393 -77.8 166.8 

 WS10-
22 

Goetz et 
al. (2017) 

Su 
2009/10 

Whisker Ad M 290 -77.8 166.8 
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 WS11-
03 

Goetz et 
al. (2017) 

Su 
2010/11 Whisker Ad F 367 -77.9 166.8 

 WS11-
04 

Goetz et 
al. (2017) 

Su 
2010/11 Whisker Ad F 402 -77.9 166.8 

 WS11-
05 

Goetz et 
al. (2017) 

Su 
2010/11 Whisker Ad M 197 -76.6 162.7 

 WS11-
06 

Goetz et 
al. (2017) 

Su 
2010/11 Whisker Ad F 206 -76.6 162.7 

 WS11-
08 

Goetz et 
al. (2017) 

Su 
2010/11 Whisker Ad F 277 -76.6 162.7 

 WS11-
09 

Goetz et 
al. (2017) 

Su 
2010/11 Whisker Ad F 336 -77.9 166.8 

 WS11-
17 

Goetz et 
al. (2017) 

Su 
2010/11 Whisker Ad F 359 -77.9 166.7 

 WS11-
18 

Goetz et 
al. (2017) 

Su 
2010/11 Whisker Ad F 247 -77.9 166.7 

 WS11-
19 

Goetz et 
al. (2017) 

Su 
2010/11 Whisker Ad M 266 -77.7 166.7 

 WS11-
21 

Goetz et 
al. (2017) 

Su 
2010/11 Whisker Ad F 382 -77.9 166.8 

 WS11-
37 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad M 331 -77.4 166.3 

 WS11-
38 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad M 268 -77.4 166.3 

 WS11-
39 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad M 268 -77.7 166.3 

 WS11-
40 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad M 268 -77.7 166.3 

 WS11-
41 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad M 268 -77.7 166.3 

 WS12-
01 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad F 405 -77.9 166.8 

 WS12-
02 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad F 351 -77.0 162.8 

 WS12-
04 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad F 351 -77.9 166.8 

 WS12-
05 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad F 386 -76.6 166.7 

 WS12-
06 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad F 332 -76.5 166.8 

 WS12-
07 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad F 416 -77.8 166.8 

 WS12-
08 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad F 429 -77.8 166.8 

 WS12-
09 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad F 429 -77.8 166.8 

 WS12-
10 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad M 221 -76.6 162.9 

 WS12-
16 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad M 230 -76.5 162.7 

 WS12-
17 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad F 230 -77.8 166.8 

 WS12-
19 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad F 230 -77.9 166.8 
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 WS12-
20 

Goetz et 
al. (2017) 

Su 
2011/12 Whisker Ad M 233 -76.1 163.1 

Ross R01 Oden Su 
2008/09 WB Sub M 107 -69.4 -125.3 

 R101 Oden Su 
2010/11 WB Ad M 180 -72.1 -123.2 

 R102 Oden Su 
2010/11 WB Ad F 145 -72.2 -123.2 

 R103 Oden Su 
2010/11 WB Sub F 102 -72.1 -123.1 

 R104 Oden Su 
2010/11 WB Ad M 205 -72.1 -123.5 

 R105 Oden Su 
2010/11 WB Ad M 151 -72.2 -126.9 

 R106 Oden Su 
2010/11 WB Ad F 174 -72.1 -127.0 

 R107 Oden Su 
2010/11 WB Ad F 131 -72.2 -127.6 

 R108 Oden Su 
2010/11 WB Ad F 198 -72.2 -132.9 

 R109 Oden Su 
2010/11 WB Ad F 153 -72.2 -133.0 

 R110 Oden Su 
2010/11 Hair Ad F 205 -72.9 -137.1 

 R111 Oden Su 
2010/11 WB Sub M 144 -72.8 -136.0 

 R112 Oden Su 
2010/11 WB Ad F 192 -73.4 -139.4 

 R113 Oden Su 
2010/11 WB Ad F 141 -73.3 -139.4 

 R114 Oden Su 
2010/11 WB Ad M 181 -75.8 -150.0 

  168 
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Table S2. Effect of lipid extraction on isotopic values of crabeater, Weddell, and Ross seals. Sample 169 
ID as in Table S1. Abbreviations: WB, whole blood without lipid extraction; LE, whole blood with 170 
lipid extraction. The difference in isotopic value between whole blood samples with and without lipid 171 
extraction is reported. The average difference is 0.0 ± 0.1 ‰ and 0.2 ± 0.1 ‰ for δ13C and δ15N, 172 
respectively. The average difference between the isotopic values with and without lipid extraction do 173 
not exceed the instrument error of 0.2 ‰ for either δ13C and δ15N values. 174 

Species Sample 
ID Year Sample 

Type 
δ13C 
(‰) 

LE 
δ13C 
(‰) 

δ15N 
(‰) 

LE 
δ15N 
(‰) 

δ13C – 
LE 
δ13C 
(‰) 

δ15N – 
LE 
δ15N 
(‰) 

Crabeater C03 2008 WB -26.3 -26.5 8.2 8.0 0.2 0.2 
 C06 2008 WB -26.5 -26.6 8.6 8.5 0.1 0.1 
 C07 2008 WB -26.2 -26.3 8.5 8.3 0.1 0.2 
 C20 2008 WB -26.0 -26.0 8.1 7.9 0.0 0.2 
 C46 2008 WB -26.0 -26.0 8.2 8.1 0.0 0.1 
 C52 2008 WB -25.5 -25.7 7.3 7.1 0.2 0.2 
 C153 2010 WB -25.9 -25.9 7.3 7.2 0.0 0.1 
 C154 2010 WB -26.1 -26.1 7.0 6.9 0.0 0.1 
 C176 2010 WB -26.6 -26.7 7.2 7.0 0.1 0.2 
Weddell W12 2008 WB -25.1 -25.1 12.3 12.1 0.0 0.2 
 W15 2008 WB -25.3 -25.3 11.4 11.2 0.0 0.2 
 W117 2010 WB -24.9 -24.9 12.0 11.8 0.0 0.2 
 W216 2010 WB -25.1 -25.2 13.2 13.1 0.1 0.1 
 W223 2010 WB -24.9 -24.9 13.9 13.8 0.0 0.1 
Ross R01 2008 WB -23.2 -23.2 8.5 8.4 0.0 0.1 
 R101 2010 WB -23.9 -23.9 9.6 9.4 0.0 0.2 
 R102 2010 WB -23.6 -23.7 9.0 8.8 0.1 0.2 
 R103 2010 WB -24.0 -24.0 9.0 8.8 0.0 0.2 
 R108 2010 WB -24.6 -24.7 10.0 9.8 0.1 0.2 
 R112 2010 WB -23.8 -23.8 9.7 9.6 0.0 0.1 
 R114 2010 WB -23.7 -23.7 8.6 8.5 0.0 0.1 
  175 
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Table S3. Bulk δ13C and δ15N values of crabeater, Weddell, and Ross seals for multiple tissue types. 176 
These isotopic values are used to calculate the isotopic offsets between different tissue types, see Table 177 
S4 below. Abbreviations are as in Tables S1.  178 

Species ID Year 
WB Clot RBCs Hair 

δ13C 
(‰) 

δ15N 
(‰) 

δ13C 
(‰) 

δ15N 
(‰) 

δ13C 
(‰) 

δ15N 
(‰) 

δ13C 
(‰) 

δ15N 
(‰) 

Crabeater 
C14 

Su 
2010/11   -26.1 7.3   -23.7 6.4 

C143 
Su 

2010/11 -26.1 8.0     -24.5 7.5 

 
C157 

Su 
2010/11 -25.8 8.4     -24.6 8.7 

 
C158 

Su 
2010/11 -25.9 8.2     -24.4 8.0 

 
C173 

Su 
2010/11 -25.9 6.9     -24.2 6.6 

 
C174 

Su 
2010/11 -26.1 7.0 -26.1 6.8   -24.4 7.5 

 
C176 

Su 
2010/11 -26.6 7.2   -26.8 6.9   

 
C02 

Su 
2010/11   -26.3 6.9   -24.7 7.1 

 
C20 

Su 
2010/11     -26.1 7.4 -25.0 7.0 

 
C21 

Su 
2010/11     -26.3 8.1 -24.9 7.3 

 
C03 

Su 
2010/11   -26.4 7.0   -24.2 7.0 

Weddell WS12
-22 Sp 2012 -24.7 12.4   -24.4 12.1   
WS12
-23 Sp 2012 -25.9 12.2   -25.3 11.7   
WS12
-24 Sp 2012 -25.6 12.1   -25.5 12.1   
WS12
-25 Sp 2012 -25.7 12.9   -25.0 12.0   
WS12
-26 Sp 2012 -24.8 12.7   -24.7 12.5   

W116 
Su 

2010/11 -24.5 12.6     -23.2 12.9 

W117 
Su 

2010/11 -24.9 12.0     -23.3 12.7 

 
W118 

Su 
2010/11 -25.1 12.0 -24.9 11.9     

 
W130 

Su 
2010/11 -24.4 13.1   -24.4 13.0   

 
W133 

Su 
2010/11 -24.4 12.5     -23.0 13.1 

 
W136 

Su 
2010/11 -25.2 11.9 -25.3 12.0     

 
W137 

Su 
2010/11 -25.1 12.0   -25.1 11.9 -23.6 12.8 

 
W176 

Su 
2010/11 -24.3 13.0     -22.9 13.0 

 
W208 

Su 
2010/11 -25.8 12.6   -25.9 12.4   
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W216 

Su 
2010/11 -25.1 13.2 -25.0 13.2     

 
W219 

Su 
2010/11 -25.6 11.9 -25.4 11.9     

 
W220 

Su 
2010/11 -25.0 12.6 -25.0 12.4     

 
W04 

Su 
2010/11   -24.8 12.2   -23.5 12.6 

 
W06 

Su 
2010/11   -24.7 12.2   -23.5 12.2 

Ross R101 Su 
2010/11 -23.9 9.6     -22.6 10.3 

R103 Su 
2010/11 -24.0 9.0     -22.8 11.0 

 R105 Su 
2010/11 -23.6 9.2     -22.4 10.1 

 R107 Su 
2010/11 -23.6 8.8     -22.4 10.5 

 R108 Su 
2010/11 -24.6 10.0     -23.0 10.8 

 179 
 180 
 181 
  182 
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Table S4. Calculated isotopic offsets between different tissue types for crabeater, Weddell, and Ross 183 
seals. Abbreviations are as in Tables S1. If a calculated mean offset is ≤ 0.2 ‰, then the offset between 184 
the two tissue types is considered insignificant (less than instrumental error as indicated by the quality 185 
control standard).  186 

Species Offset Type Sample 
ID 

δ13C 
Offset (‰) 

δ15N 
Offset (‰) 

Mean δ13C 
Offset (‰) 

Mean δ15N 
Offset (‰) 

Crabeater WB – Clot C174 0.0 0.2 0.0 0.2 
WB – RBCs C176 0.2 0.2 0.2 0.2 

 WB – Hair C143 -1.6 0.4 -1.6 0.0 
  C157 -1.2 -0.3   
  C158 -1.5 0.2   
  C173 -1.7 0.3   
  C174 -1.7 -0.5   
 Clot – Hair C14 -2.4 0.9 -2.0 0.0 
  C174 -1.7 -0.7   
  C2 -1.5 -0.2   
  C3 -2.1 0.0   
 RBCs – Hair C20 -1.1 0.4 -1.3 0.6 
  C21 -1.5 0.8   
Weddell WB – Clot W118 -0.2 0.1 -0.1 0.1 

 W136 0.1 -0.1   
  W216 -0.1 0.0   
  W219 -0.2 0.0   
  W220 0.0 0.2   
 WB – RBCs WS12-22 -0.2 0.3 -0.2 0.3 
  WS12-23 -0.6 0.4   
  WS12-24 -0.2 0.1   
  WS12-25 -0.7 0.9   
  WS12-26 -0.1 0.2   
  W130 0.1 0.1   
  W137 0.0 0.0   
  W208 0.0 0.2   
 WB – Hair W116 -1.3 -0.3 -1.4 -0.5 
  W117 -1.5 -0.7   
  W133 -1.4 -0.6   
  W137 -1.5 -0.9   
  W176 -1.4 0.0   
 Clot – Hair W4 -1.3 -0.4 -1.2 -0.2 
  W6 -1.2 0.0   
 RBCs – Hair W137 -1.5 -0.9 -1.5 -0.9 
  187 
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Ross WB – Hair R101 -1.3 -0.7 -1.3 -1.2 
 R103 -1.2 -2.0   

  R105 -1.2 -0.9   
  R107 -1.2 -1.6   
  R108 -1.6 -0.8   

 188 
 189 
 190 

191 
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Table S5. Bulk δ13C and δ15N values of Weddell seals for multiple blood sample types. These 192 
isotopic values are used to calculate the isotopic offsets between these different sample types, see 193 
Table S6 below. Abbreviations are as in Tables S1. 194 

ID Year 
WB Plasma Serum RBCs 

δ13C 
(‰) 

δ15N 
(‰) 

δ13C 
(‰) 

δ15N 
(‰) 

δ13C 
(‰) 

δ15N 
(‰) 

δ13C 
(‰) 

δ15N 
(‰) 

LW15-01 Sp 2015 -25.8 12.1 -26.4 12.3 -26.2 12.7   
LW15-02 Sp 2015 -25.2 12.1 -25.6 13.0 -25.3 13.4   
LW15-03 Sp 2015 -25.3 12.1 -25.7 12.7 -25.5 13.1   
LW15-11 Sp 2015 -25.3 12.2 -26.2 12.8 -25.8 13.3   
LW15-12 Sp 2015 -25.2 11.9 -25.8 12.8 -25.5 13.3   
WS12-22 Sp 2012 -24.7 12.4     -24.4 12.1 
WS12-23 Sp 2012 -25.9 12.2     -25.3 11.7 
WS12-24 Sp 2012 -25.6 12.1     -25.5 12.1 
WS12-25 Sp 2012 -25.7 12.9     -25.0 12.0 
WS12-26 Sp 2012 -24.8 12.7     -24.7 12.5 

W130 Su 2010/11 -24.4 13.1     -24.4 13.0 
W137 Su 2010/11 -25.1 12.0     -25.1 11.9 
W208 Su 2010/11 -25.8 12.6     -25.9 12.4 

 195 
  196 
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Table S6. Calculated isotopic offsets between different blood sample types for Weddell seals. 197 
Abbreviations are as in Tables S1. If a calculated mean offset is ≤ 0.2 ‰, then the offset between the 198 
two sample types is considered insignificant (less than instrumental error as indicated by the quality 199 
control standard).  200 

Offset Type Sample ID δ13C Offset 
(‰) 

δ15N Offset 
(‰) 

Mean δ13C 
Offset (‰) 

Mean δ15N 
Offset (‰) 

Plasma – Serum LW15-01 -0.2 -0.4 -0.3 -0.4 
 LW15-02 -0.3 -0.4   
 LW15-03 -0.2 -0.4   
 LW15-11 -0.3 -0.5   
 LW15-12 -0.3 -0.5   
WB – Serum LW15-01 0.4 -0.6 0.3 -1.1 
 LW15-02 0.2 -1.3   
 LW15-03 0.1 -1.0   
 LW15-11 0.5 -1.2   
 LW15-12 0.3 -1.4   
WB – Plasma LW15-01 0.5 -0.2 0.6 -0.7 
 LW15-02 0.4 -0.9   
 LW15-03 0.4 -0.6   
 LW15-11 0.9 -0.7   
 LW15-12 0.6 -0.9   
WB – RBCs WS12-22 -0.3 0.3 -0.2 0.3 
 WS12-23 -0.6 0.5   
 WS12-24 -0.1 0.0   
 WS12-25 -0.7 0.9   
 WS12-26 -0.1 0.2   
 W130 0.1 0.1   
 W137 0.0 0.0   
 W208 0.0 0.2   

 201 
 202 
 203 
 204 
  205 
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Table S7. Bulk δ13C and δ15N values of crabeater, Weddell, and Ross seals. Note, bulk δ13C and δ15N values are 206 
reported for the original measurement (Orig.) and with a correction to whole blood (Corr.) if the sample is a tissue 207 
type with a significant isotopic offset from whole blood. Isotopic offset between whole blood and the given sample 208 
type are reported in Tables S4 and S6, above. Atomic C:N ratios are from the original measurements. Samples with 209 
an asterisk and two asterisks are from Hückstädt et al. (2012a) and Goetz et al. (2017), correspondingly; all other 210 
data are from this study. Whisker data are from the segment representing the most recent time period, which best 211 
overlaps with the collection location and integrated time of blood tissues, except data from Hückstädt et al. (2012a) 212 
are an average for all segments. Abbreviations are as in Table S1. Additionally, “WAP,” “RS,” and “AM” 213 
abbreviate “West Antarctic Peninsula,” “Ross Sea,” and “Amundsen Sea,” respectively. 214 

Species Sample ID Season Region Sample 
Type 

Orig. 
δ13C 
(‰) 

Orig. 
δ15N 
(‰) 

Corr. 
δ13C 
(‰) 

Corr. 
δ15N 
(‰) 

Atomic 
C:N 

Crabeater C02 Su 2010/11 AM Clot -26.3 6.9  – – 3.8 
C03 Su 2008/09 AM WB -26.3 8.2 – – 3.9 

 C03 Su 2010/11 AM Clot -26.4 7.0 – – 3.8 
 C04 Su 2008/09 AM WB -26.5 8.3 – – 4.0 
 C06 Su 2008/09 AM WB -26.5 8.6 – – 3.9 
 C07 Su 2008/09 AM WB -26.2 8.5 – – 3.9 
 C07 Su 2010/11 AM Hair -24.1 7.0 -25.7 – 3.4 
 C10 Su 2010/11 AM Hair -23.5 6.8 -25.1 – 3.4 
 C11 Su 2010/11 AM Hair -23.5 6.3 -25.1 – 3.4 
 C14 Su 2010/11 AM Clot -26.1 7.4 – – 3.9 
 C15 Su 2010/11 AM WB -26.2 7.2 – – 3.9 
 C20 Su 2008/09 AM WB -26.0 8.1 – – 3.9 
 C20 Su 2010/11 AM RBCs -26.1 7.4 – – 3.8 
 C21 Su 2008/09 AM Clot -26.4 8.3 – – 3.9 
 C21 Su 2010/11 AM RBCs -26.3 8.1 – – 3.9 
 C22 Su 2008/09 AM Clot -26.5 8.4 – – 3.9 
 C32 Su 2008/09 AM WB -26.1 7.6 – – 3.9 
 C33 Su 2008/09 AM WB -26.0 7.8 – – 3.8 
 C43 Su 2008/09 AM WB -26.2 7.4 – – 3.9 
 C44 Su 2008/09 AM WB -26.3 7.5 – – 3.9 
 C45 Su 2008/09 AM WB -26.6 7.4 – – 3.9 
 C46 Su 2008/09 AM WB -26.0 8.2 – – 3.8 
 C47 Su 2008/09 RS WB -25.6 7.5 – – 3.9 
 C48 Su 2008/09 RS WB -25.8 7.1 – – 4.0 
 C50 Su 2008/09 RS WB -26.1 8.4 – – 4.0 
 C51 Su 2008/09 RS WB -26.1 7.3 – – 3.8 
 C52 Su 2008/09 RS WB -25.5 7.3 – – 3.8 
 C143 Su 2010/11 AM WB -26.1 8.0 – – 3.9 
 C144 Su 2010/11 AM WB -26.1 7.9 – – 3.9 
 C153 Su 2010/11 AM WB -25.9 7.3 – – 3.9 
 C154 Su 2010/11 AM WB -26.1 7.0 – – 3.9 
 C155 Su 2010/11 AM Hair -24.8 7.7 -26.4 – 3.4 
 C156 Su 2010/11 AM WB -26.0 7.9 – – 3.9 
 C157 Su 2010/11 AM WB -25.8 8.4 – – 4.0 
 C158 Su 2010/11 AM WB -25.9 8.2 – – 4.0 
 C173 Su 2010/11 AM WB -25.9 6.9 – – 3.9 
 C174 Su 2010/11 AM WB -26.1 7.0 – – 3.9 
 C175 Su 2010/11 AM Hair -23.2 6.7 -24.8 – 3.4 
 C176 Su 2010/11 AM WB -26.6 7.2 – – 3.9 
 C177 Su 2010/11 RS WB -26.2 7.7 – – 3.9 
 Cr-1 Su 2009/10 RS Hair -25.0 7.7 -26.6 – 3.4 
 Cr-CR Su 2009/10 RS Hair -24.6 7.6 -26.2 – 3.4 
 Cr-2 Su 2009/10 RS Hair -25.5 7.3 -27.1 – 3.4 
 CS11-01 Su 2010/11 RS WB -25.5 11.9 – – 4.0 
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 G001* F 2001 WAP Whisker -19.8 7.1 -21.4 – 3.4 
 G003* F 2001 WAP Whisker -22.1 5.3 -23.7 – 3.5 
 G004* F 2001 WAP Whisker -21.8 6.7 -23.4 – 3.5 
 G005* F 2001 WAP Whisker -21.9 6.6 -23.5 – 3.5 
 G006* F 2001 WAP Whisker -24.1 6.2 -25.7 – 3.5 
 G007* F 2001 WAP Whisker -21.8 6.4 -23.4 – 3.4 
 G008* F 2001 WAP Whisker -22.0 6.8 -23.6 – 3.4 
 G009* W 2001 WAP Whisker -23.4 6.2 -25.0 – 3.4 
 G010* W 2001 WAP Whisker -22.5 6.5 -24.1 – 3.4 
 G012* W 2001 WAP Whisker -21.5 6.8 -23.1 – 3.5 
 G013* W 2001 WAP Whisker -21.3 6.7 -22.9 – 3.5 
 G014* W 2001 WAP Whisker -21.6 7.6 -23.2 – 3.4 
 G015* W 2001 WAP Whisker -22.4 7.3 -24.0 – 3.5 
 G016* W 2001 WAP Whisker -21.1 5.9 -22.7 – 3.5 
 G017* F 2002 WAP Whisker -21.8 6.8 -23.4 – 3.3 
 G018* F 2002 WAP Whisker -24.9 6.5 -26.5 – 3.3 
 G019* F 2002 WAP Whisker -24.7 6.6 -26.3 – 3.3 
 G020* F 2002 WAP Whisker -24.5 6.6 -26.1 – 3.3 
 G021* F 2002 WAP Whisker -22.3 6.7 -23.9 – 3.4 
 G022* F 2002 WAP Whisker -20.9 7.9 -22.5 – 3.4 
 G023* F 2002 WAP Whisker -24.6 6.4 -26.2 – 3.3 
 G024* F 2002 WAP Whisker -21.8 7.2 -23.4 – 3.3 
 G026* F 2002 WAP Whisker -23.6 6.5 -25.2 – 3.3 
 G027* F 2002 WAP Whisker -22.3 6.9 -23.9 – 3.3 
 G028* F 2002 WAP Whisker -22.2 7.1 -23.8 – 3.3 
 G029* F 2002 WAP Whisker -21.6 7.2 -23.2 – 3.3 
 G030* F 2002 WAP Whisker -22.1 6.9 -23.7 – 3.3 
 G031* F 2002 WAP Whisker -21.2 7.5 -22.8 – 3.3 
 G032* F 2002 WAP Whisker -23.2 7.0 -24.8 – 3.3 
 G033* W 2002 WAP Whisker -21.1 7.5 -22.7 – 3.3 
 G034* W 2002 WAP Whisker -21.8 6.7 -23.4 – 3.3 
 G035* W 2002 WAP Whisker -21.6 7.0 -23.2 – 3.3 
 G036* W 2002 WAP Whisker -21.5 7.3 -23.1 – 3.4 
 G038* W 2002 WAP Whisker -22.0 6.9 -23.6 – 3.4 
 G039* W 2002 WAP Whisker -22.9 7.3 -24.5 – 3.4 
 G040* W 2002 WAP Whisker -23.7 6.5 -25.3 – 3.4 
 G041* W 2002 WAP Whisker -22.9 6.7 -24.5 – 3.4 
 G042* W 2002 WAP Whisker -21.6 6.9 -23.2 – 3.5 
 G043* W 2002 WAP Whisker -22.8 7.4 -24.4 – 3.4 
 G044* W 2002 WAP Whisker -21.8 7.1 -23.4 – 3.5 
 G045* W 2002 WAP Whisker -22.0 7.6 -23.6 – 3.4 
 G046* W 2002 WAP Whisker -21.7 7.8 -23.3 – 3.4 
 G047* W 2002 WAP Whisker -21.5 7.1 -23.1 – 3.5 
 G102* F 2007 WAP Whisker -23.8 5.3 -25.4 – na 
 G104* F 2007 WAP Whisker -22.7 6.9 -24.3 – 3.4 
 G105* F 2007 WAP Whisker -22.3 7.1 -23.9 – na 
 G106* F 2007 WAP Whisker -21.9 7.1 -23.5 – 3.5 
 G107* F 2007 WAP Whisker -23.3 6.6 -24.9 – na 
 G108* F 2007 WAP Whisker -21.5 7.5 -23.1 – 3.4 
 G110* F 2007 WAP Whisker -23.1 7.9 -24.7 – na 
 G112* F 2007 WAP Whisker -24.0 5.4 -25.6 – 3.4 
 G113* F 2007 WAP Whisker -23.3 5.8 -24.9 – 3.5 
 W02 Su 2008/09 AM WB -26.3 8.5 – – 4.0 
Weddell W01 Su 2010/11 AM Hair -23.2 13.3 -24.6 12.8 3.5 

W02 Su 2010/11 AM Hair -23.2 12.6 -24.6 12.1 3.5 
 W04 Su 2010/11 AM Clot -24.8 12.2 – – 3.9 
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 W06 Su 2010/11 AM Clot -24.7 12.2 – – 3.9 
 W10 Su 2008/09 RS WB -24.8 11.8 – – 3.9 
 W11 Su 2008/09 RS WB -25.2 11.6 – – 4.0 
 W12 Su 2008/09 RS WB -25.1 12.3 – – 3.9 
 W14 Su 2008/09 RS WB -24.9 12.1 – – 3.9 
 W15 Su 2008/09 RS WB -25.3 11.4 – – 3.9 
 W17 Su 2008/09 RS WB -25.1 11.9 – – 4.0 
 W19 Su 2008/09 RS WB -25.2 12.0 – – 3.9 
 W103 Su 2010/11 AM WB -25.7 10.0 – – 3.9 
 W112 Su 2010/11 AM Hair -23.2 13.3 -24.6 12.8 3.5 
 W113 Su 2010/11 AM WB -24.6 12.6 – – 4.0 
 W116 Su 2010/11 AM WB -24.5 12.6 – – 3.9 
 W117 Su 2010/11 AM WB -24.9 12.0 – – 4.0 
 W118 Su 2010/11 AM WB -25.1 12.0 – – 4.0 
 W130 Su 2010/11 AM WB -24.4 13.1 – – 3.9 
 W133 Su 2010/11 AM WB -24.4 12.5 – – 3.9 
 W136 Su 2010/11 AM WB -25.2 11.9 – – 4.0 
 W137 Su 2010/11 AM WB -25.1 12.0 – – 3.9 
 W155 Su 2010/11 AM WB -24.3 13.2 – – 4.0 
 W157 Su 2010/11 AM WB -25.0 13.0 – – 4.0 
 W174 Su 2010/11 AM WB -24.6 11.8 – – 3.9 
 W175 Su 2010/11 AM WB -24.2 13.1 – – 4.0 
 W176 Su 2010/11 AM WB -24.4 13.0 – – 3.9 
 W177 Su 2010/11 AM WB -24.5 13.0 – – 3.9 
 W182 Su 2010/11 AM Hair -24.1 10.3 -25.5 9.8 3.5 
 W185 Su 2010/11 RS WB -25.8 11.8 – – 3.9 
 W186 Su 2010/11 RS WB -26.2 12.0 – – 3.9 
 W208 Su 2010/11 RS WB -25.8 12.6 – – 3.9 
 W209 Su 2010/11 RS WB -26.0 12.7 – – 3.9 
 W214 Su 2010/11 RS WB -26.3 11.8 – – 4.0 
 W216 Su 2010/11 RS WB -25.1 13.2 – – 4.0 
 W219 Su 2010/11 RS WB -25.6 11.9 – – 4.0 
 W220 Su 2010/11 RS WB -25.0 12.6 – – 4.0 
 W222 Su 2010/11 RS WB -25.2 12.2 – – 3.9 
 W223 Su 2010/11 RS WB -24.9 13.9 – – 4.1 
 WS10-11  Su 2009/10 RS RBC -25.0 12.3 – 12.6 3.9 
 WS10-12 Su 2009/10 RS RBC -25.0 11.7 – 12.0 3.8 
 WS10-13 Su 2009/10 RS RBC -24.8 12.0 – 12.3 3.9 
 WS10-17  Su 2009/10 RS RBC -25.5 11.5 – 11.8 4.0 
 WS10-18  Su 2009/10 RS RBC -25.3 11.3 – 11.6 3.8 
 WS11-11 Su 2010/11 RS WB -25.7 11.6 – – 4.0 
 WS11-12 Su 2010/11 RS WB -25.5 11.7 – – 3.9 
 WS11-13  Su 2010/11 RS WB -24.9 12.4 – – 3.9 
 WS11-14  Su 2010/11 RS WB -24.6 12.4 – – 3.9 
 WS11-15 Su 2010/11 RS WB -25.7 11.8 – – 4.0 
 WS12-11  Su 2011/12 RS RBC -25.0 12.1 – 12.4 3.9 
 WS12-12  Su 2011/12 RS RBC -25.4 11.9 – 12.2 3.9 
 WS12-13  Su 2011/12 RS RBC -25.3 12.1 – 12.4 3.9 
 WS12-14  Su 2011/12 RS RBC -25.3 12.0 – 12.3 3.8 
 WS12-15 Su 2011/12 RS RBC -25.4 11.8 – 12.1 3.9 
 WS12-22  Sp 2012 RS WB -24.7 12.4 – – 4.1 
 WS12-23  Sp 2012 RS WB -25.9 12.2 – – 4.3 
 WS12-24 Sp 2012 RS WB -25.6 12.1 – – 4.1 
 WS12-25 Sp 2012 RS WB -25.7 12.9 – – 4.4 
 WS12-26 Sp 2012 RS WB -24.8 12.7 – – 4.0 
 G103 F 2007 WAP Serum -22.4 13.1 -22.1 12.0 4.3 
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 G111 F 2007 WAP Plasma -22.8 12.3 -22.2 11.6 4.2 
 LW11-03 Su 2010/11 RS WB -24.3 12.2 – – 3.9 
 LW11-05 Su 2010/11 RS WB -25.7 12.2 – – 3.9 
 LW11-06 Su 2010/11 RS WB -25.8 12.0 – – 3.9 
 LW11-07 Su 2010/11 RS WB -25.6 12.2 – – 3.9 
 LW11-08 Su 2010/11 RS WB -24.9 12.3 – – 3.9 
 LW11-09 Su 2010/11 RS WB -25.0 12.3 – – 3.9 
 LW11-10 Su 2010/11 RS WB -25.7 11.9 – – 3.9 
 LW11-11 Su 2010/11 RS WB -24.1 13.1 – – 3.9 
 LW11-12 Su 2010/11 RS WB -25.8 12.0 – – 3.9 
 LW11-13 Su 2010/11 RS WB -25.3 12.1 – – 3.9 
 LW11-14 Su 2010/11 RS WB -25.5 12.1 – – 3.9 
 LW11-15 Su 2010/11 RS WB -25.8 13.0 – – 4.1 
 LW15-01 Sp 2015 RS WB -25.8 12.1 – – 4.2 
 LW15-02 Sp 2015 RS WB -25.2 12.1 – – 3.9 
 LW15-03 Sp 2015 RS WB -25.3 12.1 – – 3.9 
 LW15-04 Sp 2015 RS WB -25.3 12.0 – – 3.9 
 LW15-05 Sp 2015 RS WB -25.3 12.2 – – 3.9 
 LW15-06 Sp 2015 RS WB -25.2 11.8 – – 4.0 
 LW15-07 Sp 2015 RS WB -25.3 12.2 – – 4.0 
 LW15-08 Sp 2015 RS WB -25.3 11.9 – – 3.9 
 LW15-09 Sp 2015 RS WB -25.3 12.0 – – 3.9 
 LW15-10 Sp 2015 RS WB -25.1 12.2 – – 3.9 
 LW15-11 Sp 2015 RS WB -25.3 12.2 – – 3.9 
 LW15-12 Sp 2015 RS WB -25.2 11.9 – – 4.0 
 W006 Su 2009/10 WAP Whisker -22.6 10.9 -24.0 10.4 3.4 
 W013 Su 2009/10 WAP Whisker -21.9 12.1 -23.3 11.6 3.4 
 WS10-01** Su 2009/10 RS Whisker -23.3 12.9 -24.7 12.4 na 
 WS10-02** Su 2009/10 RS Whisker -22.8 14.5 -24.2 14.0 na 
 WS10-03** Su 2009/10 RS Whisker -23.5 13.0 -24.9 12.5 na 
 WS10-04** Su 2009/10 RS Whisker -23.0 12.5 -24.4 12.0 na 
 WS10-05** Su 2009/10 RS Whisker -22.9 12.4 -24.3 11.9 na 
 WS10-06** Su 2009/10 RS Whisker -24.6 13.3 -26.0 12.8 na 
 WS10-07** Su 2009/10 RS Whisker -23.3 12.8 -24.7 12.3 na 
 WS10-19** Su 2009/10 RS Whisker -23.8 12.5 -25.2 12.0 na 
 WS10-20** Su 2009/10 RS Whisker -23.8 12.9 -25.2 12.4 na 
 WS10-21** Su 2009/10 RS Whisker -22.9 12.5 -24.3 12.0 na 
 WS10-22** Su 2009/10 RS Whisker -23.1 12.4 -24.5 11.9 na 
 WS11-03** Su 2010/11 RS Whisker -23.4 12.6 -24.8 12.1 na 
 WS11-04** Su 2010/11 RS Whisker -23.5 12.8 -24.9 12.3 na 
 WS11-05** Su 2010/11 RS Whisker -23.3 13.5 -24.7 13.0 na 
 WS11-06** Su 2010/11 RS Whisker -23.5 14.0 -24.9 13.5 na 
 WS11-08** Su 2010/11 RS Whisker -23.3 13.8 -24.7 13.3 na 
 WS11-09** Su 2010/11 RS Whisker -24.7 14.2 -26.1 13.7 na 
 WS11-17** Su 2010/11 RS Whisker -23.4 12.5 -24.8 12.0 na 
 WS11-18** Su 2010/11 RS Whisker -23.6 12.9 -25.0 12.4 na 
 WS11-19** Su 2010/11 RS Whisker -23.5 13.4 -24.9 12.9 na 
 WS11-21** Su 2010/11 RS Whisker -24.1 12.5 -25.5 12.0 na 
 WS11-37** Su 2011/12 RS Whisker -23.0 12.7 -24.4 12.2 na 
 WS11-38** Su 2011/12 RS Whisker -23.1 13.5 -24.5 13.0 na 
 WS11-39** Su 2011/12 RS Whisker -23.5 12.6 -24.9 12.1 na 
 WS11-40** Su 2011/12 RS Whisker -23.7 12.8 -25.1 12.3 na 
 WS11-41** Su 2011/12 RS Whisker -23.4 13.6 -24.8 13.1 na 
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 WS12-01** Su 2011/12 RS Whisker -24.1 12.8 -25.5 12.3 na 
 WS12-02** Su 2011/12 RS Whisker -23.7 12.6 -25.1 12.1 na 
 WS12-04** Su 2011/12 RS Whisker -23.3 12.7 -24.7 12.2 na 
 WS12-05** Su 2011/12 RS Whisker -23.2 13.2 -24.6 12.7 na 
 WS12-06** Su 2011/12 RS Whisker -22.7 13.4 -24.1 12.9 na 
 WS12-07** Su 2011/12 RS Whisker -23.2 13.8 -24.6 13.3 na 
 WS12-08** Su 2011/12 RS Whisker -22.6 13.7 -24.0 13.2 na 
 WS12-09** Su 2011/12 RS Whisker -22.8 13.6 -24.2 13.1 na 
 WS12-10** Su 2011/12 RS Whisker -23.6 13.3 -25.0 12.8 na 
 WS12-16** Su 2011/12 RS Whisker -24.2 12.7 -25.6 12.2 na 
 WS12-17** Su 2011/12 RS Whisker -23.8 12.4 -25.2 11.9 na 
 WS12-19** Su 2011/12 RS Whisker -23.4 13.6 -24.8 13.1 na 
 WS12-20** Su 2011/12 RS Whisker -23.4 13.2 -24.8 12.7 na 
Ross R01 Su 2008/09 AM WB -23.2 8.5 – – 3.9 

R101 Su 2010/11 AM WB -23.9 9.6 – – 3.9 
 R102 Su 2010/11 AM WB -23.6 9.0 – – 4.0 
 R103 Su 2010/11 AM WB -24.0 9.0 – – 4.0 
 R104 Su 2010/11 AM WB -23.7 9.2 – – 4.0 
 R105 Su 2010/11 AM WB -23.6 9.2 – – 4.0 
 R106 Su 2010/11 AM WB -24.1 8.8 – – 3.9 
 R107 Su 2010/11 AM WB -23.6 8.8 – – 3.9 
 R108 Su 2010/11 AM WB -24.6 10.0 – – 4.0 
 R109 Su 2010/11 AM WB -23.9 9.0 – – 4.0 
 R110 Su 2010/11 AM Hair -23.0 10.0 -24.3 8.8 3.5 
 R111 Su 2010/11 AM WB -23.6 8.8 – – 4.0 
 R112 Su 2010/11 AM WB -23.8 9.7 – – 3.9 
 R113 Su 2010/11 AM WB -23.7 9.0 – – 4.0 
 R114 Su 2010/11 RS WB -23.8 8.6 – – 4.0 
 215 
  216 
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Table S8. Amino acid δ15N values for crabeater, Ross, and Weddell seals. Values are reported as the 217 
mean ± one standard deviation for the injections on the GC/C/IRMS. For crabeater seals, whole 218 
blood (C06, C44, C177) and plasma (G112, G105, and G110) samples were analyzed. All Ross seal 219 
samples analyzed for amino acid δ15N values were whole blood. For Weddell seals, whole blood 220 
(W185, W220, and WS11-11), plasma (G111), and sample from the first segment nearest the 221 
whisker base, 0.0-0.5 cm, (W006 and W013) were used for CSI-AA. Abbreviation: na, not available. 222 

Species Sample ID Region Amino Acid  Injections δ15N (‰) 
Crabeater C06 AM Alanine 3 13.7 ± 0.3 
 C06 AM Glycine 3 8.5 ± 0.1 
 C06 AM Threonine 3 -21.9 ± 0.6 
 C06 AM Serine 3 7.0 ± 0.5 
 C06 AM Valine 3 14.9 ± 0.3 
 C06 AM Leucine 3 13.9 ± 0.2 
 C06 AM Isoleucine 3 12.8 ± 0.2 
 C06 AM Proline 3 15.7 ± 0.4 
 C06 AM Aspartic 3 11.0 ± 0.3 
 C06 AM Glutamic acid 3 15.1 ± 0.4 
 C06 AM Phenylalanine 3 6.8 ± 0.3 
 C06 AM Lysine 3 5.5 ± 0.6 
 G112 WAP Alanine 3 12.0 ± 0.7 
 G112 WAP Glycine 3 0.6 ± 0.1 
 G112 WAP Threonine 3 -20.7 ± 0.1 
 G112 WAP Serine 3 1.9 ± 0.2 
 G112 WAP Valine 3 13.5 ± 0.2 
 G112 WAP Leucine 3 11.8 ± 0.6 
 G112 WAP Isoleucine 3 11.6 ± 1.0 
 G112 WAP Proline 3 15.5 ± 0.6 
 G112 WAP Aspartic 3 9.9 ± 0.2 
 G112 WAP Glutamic acid 3 15.0 ± 0.4 
 G112 WAP Phenylalanine 3 4.3 ± 0.1 
 G112 WAP Lysine 2 4.5 ± 0.2 
 C44 AM Alanine 3 14.3 ± 0.4 
 C44 AM Glycine 3 4.7 ± 0.4 
 C44 AM Threonine 3 -25.4 ± 0.4 
 C44 AM Serine 3 4.2 ± 0.2 
 C44 AM Valine 3 15.1 ± 0.5 
 C44 AM Leucine 3 13.4 ± 0.5 
 C44 AM Isoleucine 3 12.2 ± 0.1 
 C44 AM Proline 3 14.7 ± 0.3 
 C44 AM Aspartic 3 9.3 ± 0.2 
 C44 AM Glutamic acid 3 15.0 ± 0.2 
 C44 AM Phenylalanine 3 5.8 ± 0.2 
 C44 AM Lysine 3 4.9 ± 0.3 
 G105 WAP Alanine 3 13.3 ± 0.4 
 G105 WAP Glycine 3 1.6 ± 0.3 
 G105 WAP Threonine 3 -19.6 ± 0.4 
 G105 WAP Serine 3 2.5 ± 0.3 
 G105 WAP Valine 3 14.4 ± 0.5 
 G105 WAP Leucine 3 12.7 ± 0.1 
 G105 WAP Isoleucine 3 11.5 ± 0.6 
 G105 WAP Proline 3 16.5 ± 0.5 
 G105 WAP Aspartic 3 10.4 ± 0.0 
 G105 WAP Glutamic acid 3 15.2 ± 0.3 
 G105 WAP Phenylalanine 3 4.7 ± 0.2 
 G105 WAP Lysine 3 5.3 ± 0.5 
 C177 RS Alanine 4 14.6 ± 0.4 
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 C177 RS Glycine 4 3.9 ± 0.4 
 C177 RS Threonine 4 -26.1 ± 0.8  
 C177 RS Serine 4 5.2 ± 0.6 
 C177 RS Valine 4 15.7 ± 0.8 
 C177 RS Leucine 4 14.4 ± 0.5 
 C177 RS Isoleucine 4 12.6 ± 0.7 
 C177 RS Proline 4 15.7 ± 0.5 
 C177 RS Aspartic 4 9.8 ± 0.1 
 C177 RS Glutamic acid 4 14.4 ± 0.3 
 C177 RS Phenylalanine 4 5.4 ± 0.4 
 C177 RS Lysine 4 5.1 ± 0.5 
 G110 WAP Alanine 3 13.4 ± 0.1 
 G110 WAP Glycine 3 3.4 ± 0.1 
 G110 WAP Threonine 3 -23.4 ± 0.3 
 G110 WAP Serine 3 4.7 ± 0.5 
 G110 WAP Valine 3 15.8 ± 0.3 
 G110 WAP Leucine 3 13.5 ± 0.2 
 G110 WAP Isoleucine 3 12.3 ± 0.4 
 G110 WAP Proline 3 15.8 ± 0.3 
 G110 WAP Aspartic 3 10.4 ± 0.4 
 G110 WAP Glutamic acid 3 14.8 ± 0.4 
 G110 WAP Phenylalanine 3 4.1 ± 0.5 
 G110 WAP Lysine 3 5.0 ± 0.2 
Weddell G111 WAP Alanine 3 18.9 ± 0.4 
 G111 WAP Glycine 3 5.0 ± 0.4 
 G111 WAP Threonine 3 -22.1 ± 0.6 
 G111 WAP Serine 3 8.6 ± 0.1 
 G111 WAP Valine 3 22.9 ± 0.5 
 G111 WAP Leucine 3 20.8 ± 0.4 
 G111 WAP Isoleucine 3 19.6 ± 0.6 
 G111 WAP Proline 3 20.8 ± 0.9 
 G111 WAP Aspartic 3 16.7 ± 0.5 
 G111 WAP Glutamic acid 3 20.4 ± 0.5 
 G111 WAP Phenylalanine 3 5.3 ± 0.4 
 G111 WAP Lysine 3 6.7 ± 0.4 
 W006 WAP Alanine 3 20.7 ± 0.2 
 W006 WAP Glycine 3 2.1 ± 0.1 
 W006 WAP Threonine 3 -29.4 ± 0.3 
 W006 WAP Serine 3 6.7 ± 0.2 
 W006 WAP Valine 3 24.0 ± 0.5 
 W006 WAP Leucine 3 21.7 ± 0.4 
 W006 WAP Isoleucine 3 21.4 ± 0.9 
 W006 WAP Proline 3 18.0 ± 0.1 
 W006 WAP Aspartic 3 12.8 ± 0.1 
 W006 WAP Glutamic acid 3 20.8 ± 0.2 
 W006 WAP Phenylalanine 3 5.9 ± 0.5 
 W006 WAP Lysine 1 3.1 
 W013 WAP Alanine 3 22.1 ± 0.1 
 W013 WAP Glycine 3 2.3 ± 0.1 
 W013 WAP Threonine 3 -31.9 ± 0.3 
 W013 WAP Serine 3 8.0 ± 0.2 
 W013 WAP Valine 3 25.5 ± 0.5 
 W013 WAP Leucine 3 23.5 ± 0.1 
 W013 WAP Isoleucine 3 24.0 ± 0.2 
 W013 WAP Proline 3 18.5 ± 0.2 
 W013 WAP Aspartic 3 14.2 ± 0.1 
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 W013 WAP Glutamic acid 3 22.2 ± 0.2 
 W013 WAP Phenylalanine 3 5.9 ± 0.1 
 W013 WAP Lysine 2 3.6 ± 0.8 
 W185 RS Alanine 3 22.8 ± 0.1 
 W185 RS Glycine 3 6.9 ± 0.9 
 W185 RS Threonine 3 -29.9 ± 0.4 
 W185 RS Serine 3 9.0 ± 0.5 
 W185 RS Valine 3 24.2 ± 0.4 
 W185 RS Leucine 3 22.6 ± 0.4 
 W185 RS Isoleucine 3 21.7 ± 0.6 
 W185 RS Proline 3 21.0 ± 0.1 
 W185 RS Aspartic 3 17.2 ± 0.2 
 W185 RS Glutamic acid 3 20.7 ± 0.4 
 W185 RS Phenylalanine 3 5.0 ± 0.0 
 W185 RS Lysine 3 5.4 ± 0.4 
 W220 RS Alanine 3 23.1 ± 0.1 
 W220 RS Glycine 3 9.4 ± 0.3 
 W220 RS Threonine 3 -27.9 ± 0.3 
 W220 RS Serine 3 10.9 ± 0.3 
 W220 RS Valine 3 25.0 ± 0.6 
 W220 RS Leucine 3 23.3 ± 0.2 
 W220 RS Isoleucine 3 22.8 ± 1.0 
 W220 RS Proline 3 21.3 ± 0.7 
 W220 RS Aspartic 3 18.6 ± 0.1 
 W220 RS Glutamic acid 3 22.3 ± 0.2 
 W220 RS Phenylalanine 3 6.4 ± 0.1 
 W220 RS Lysine 3 6.8 ± 0.8 
 WS11-11 RS Alanine 3 22.5 ± 0.1 
 WS11-11 RS Glycine 3 7.0 ± 0.9 
 WS11-11 RS Threonine 3 -28.3 ± 0.3 
 WS11-11 RS Serine 3 9.2 ± 0.5 
 WS11-11 RS Valine 3 24.6 ± 0.3 
 WS11-11 RS Leucine 3 22.6 ± 0.3 
 WS11-11 RS Isoleucine 3 21.7 ± 0.9 
 WS11-11 RS Proline 3 20.4 ± 0.9 
 WS11-11 RS Aspartic 3 17.5 ± 0.5 
 WS11-11 RS Glutamic acid 3 21.5 ± 0.3 
 WS11-11 RS Phenylalanine 3 5.6 ± 0.2 
 WS11-11 RS Lysine 3 5.8 ± 0.5 
Ross R101 AM Alanine 3 20.3 ± 0.3 
 R101 AM Glycine 3 2.9 ± 0.2 
 R101 AM Threonine 3 -29.2 ± 0.2 
 R101 AM Serine 3 4.4 ± 0.7 
 R101 AM Valine 3 21.5 ± 0.1 
 R101 AM Leucine 3 19.9 ± 0.3 
 R101 AM Isoleucine 3 20.1 ± 1.0 
 R101 AM Proline 3 17.3 ± 0.3 
 R101 AM Aspartic 3 15.9 ± 0.1 
 R101 AM Glutamic acid 3 18.3 ± 0.7 
 R101 AM Phenylalanine 3 2.5 ± 0.2 
 R101 AM Lysine na Na 
 R103 AM Alanine 3 18.5 ± 0.3 
 R103 AM Glycine 3 5.1 ± 0.4 
 R103 AM Threonine 3 -27.4 ± 0.7 
 R103 AM Serine 3 5.4 ± 0.8 
 R103 AM Valine 3 20.0 ± 0.4 
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 R103 AM Leucine 3 18.6 ± 0.3 
 R103 AM Isoleucine 3 15.7 ± 0.6 
 R103 AM Proline 3 16.9 ± 0.6 
 R103 AM Aspartic 3 13.9 ± 0.2 
 R103 AM Glutamic acid 3 17.2 ± 0.6 
 R103 AM Phenylalanine 3 2.6 ± 0.4 
 R103 AM Lysine 3 1.8 ± 0.4 
 R106 AM Alanine 3 18.8 ± 0.1 
 R106 AM Glycine 3 5.7 ± 0.3 
 R106 AM Threonine 3 -27.5 ± 0.3 
 R106 AM Serine 3 5.8 ± 0.4 
 R106 AM Valine 3 19.3 ± 0.4 
 R106 AM Leucine 3 17.9 ± 0.3 
 R106 AM Isoleucine 3 18.8 ± 0.7 
 R106 AM Proline 3 17.3 ± 0.2 
 R106 AM Aspartic 3 14.0 ± 0.2 
 R106 AM Glutamic acid 3 16.9 ± 0.3 
 R106 AM Phenylalanine 3 1.9 ± 0.2 
 R106 AM Lysine 3 2.5 ± 0.4 
 R111 AM Alanine 3 18. 6 ± 0.3 
 R111 AM Glycine 3 5.2 ± 0.1 
 R111 AM Threonine 3 -28.0 ± 0.1 
 R111 AM Serine 3 5.7 ± 0.3 
 R111 AM Valine 3 19.7 ± 0.3 
 R111 AM Leucine 3 18.2 ± 0.3 
 R111 AM Isoleucine 3 18.4  ± 0.7 
 R111 AM Proline 3 16.4 ± 0.9 
 R111 AM Aspartic 3 13.6 ± 0.2 
 R111 AM Glutamic acid 3 17.6 ± 0.3 
 R111 AM Phenylalanine 3 1.9 ± 0.1 
 R111 AM Lysine 3 3.4 ± 0.2 
 R112 AM Alanine 3 19.2 ± 0.5 
 R112 AM Glycine 3 4.8 ± 0.5 
 R112 AM Threonine 3 -28.0 ± 0.7 
 R112 AM Serine 3 4.7 ± 0.4 
 R112 AM Valine 3 19.7 ± 0.1 
 R112 AM Leucine 3 18.2 ± 0.1 
 R112 AM Isoleucine 2 17.7 ± 0.6 
 R112 AM Proline 3 17.1 ± 0.6 
 R112 AM Aspartic 3 14.3 ± 0.4 
 R112 AM Glutamic acid 3 17.6 ± 0.5 
 R112 AM Phenylalanine 3 3.9 ± 0.2 
 R112 AM Lysine 3 3.1 ± 0.4 
 R114 RS Alanine 3 17.6 ± 0.4 
 R114 RS Glycine 3 5.9 ± 0.3 
 R114 RS Threonine 3 -25.9 ± 0.2 
 R114 RS Serine 3 5.9 ± 0.8 
 R114 RS Valine 3 19.0 ± 0.4 
 R114 RS Leucine 3 17.5 ± 0.4 
 R114 RS Isoleucine na Na 
 R114 RS Proline 3 18.1 ± 0.8 
 R114 RS Aspartic 3 12.9 ± 0.2 
 R114 RS Glutamic acid 3 17.5 ± 0.8 
 R114 RS Phenylalanine 3 3.1 ± 0.3 
 R114 RS Lysine 2 3.3 ± 0.1 
  223 



Antarctic Seal Foraging Ecology 

 41 

Table S9. Results of one-way ANOVA Bonferroni post-hoc comparisons for 224 
amino acid δ15N data for the three seal species. Significant p-values are < 0.05.  225 

Amino Acid ANOVA Post-hoc p-
values Comparison 

Ala <0.001 Crabeater vs. Ross 
 <0.001 Crabeater vs. Weddell 
 0.003 Ross vs. Weddell 

Gly – Crabeater vs. Ross 
 – Crabeater vs. Weddell 
 – Ross vs. Weddell 

Thr 0.01 Crabeater vs. Ross 
 0.006 Crabeater vs. Weddell 
 – Ross vs. Weddell 

Ser – Crabeater vs. Ross 
 <0.001 Crabeater vs. Weddell 
 0.002 Ross vs. Weddell 

Val <0.001 Crabeater vs. Ross 
 <0.001 Crabeater vs. Weddell 
 <0.001 Ross vs. Weddell 

Leu <0.001 Crabeater vs. Ross 
 <0.001 Crabeater vs. Weddell 
 <0.001 Ross vs. Weddell 

Ile <0.001 Crabeater vs. Ross 
 <0.001 Crabeater vs. Weddell 
 <0.001 Ross vs. Weddell 

Pro 0.03 Crabeater vs. Ross 
 <0.001 Crabeater vs. Weddell 
 <0.001 Ross vs. Weddell 

Asp <0.001 Crabeater vs. Ross 
 <0.001 Crabeater vs. Weddell 
 – Ross vs. Weddell 

Glu <0.001 Crabeater vs. Ross 
 <0.001 Crabeater vs. Weddell 
 <0.001 Ross vs. Weddell 

Phe <0.001 Crabeater vs. Ross 
 – Crabeater vs. Weddell 
 <0.001 Ross vs. Weddell 

Lys 0.009 Crabeater vs. Ross 
 – Crabeater vs. Weddell 
 0.005 Ross vs. Weddell 

 226 
  227 
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Table S10. Bulk δ13C and δ15N values of crabeater, Weddell, and Ross seals from the literature. Note, 228 
bulk δ13C and δ15N values are reported for the original measurement (Orig.) and with a correction to 229 
whole blood (Corr.) if the sample is a tissue type with a significant isotopic offset from whole blood. 230 
Isotopic offset between whole blood and the given sample type are reported in Tables S4 and S6, above. 231 
Abbreviations: RBCs, red blood cells; F, female; M, male; na, information not available; NDR, no dive 232 
records; RS, Ross Sea; AS, Amundsen Sea; WAP, West Antarctic Peninsula; n, sample size. 233 

Species Sample 
Type n Sex Age 

Class Area 
Orig. 
δ13C 
(‰) 

Orig. 
δ15N 
(‰) 

Corr. 
δ13C 
(‰) 

Corr. 
δ15N 
(‰) 

Source 

Ross  
Serum 21 M na RS/AS 24.3 

± 0.4 
10.6 
± 0.6 

-24.0 ± 
0.4 

9.5 ± 
0.4 

Zhao et 
al. 

(2004) 
 

Serum 12 F  na RS/AS -24.0 
± 0.4 

10.0 
± 0.5 

-23.7 ± 
0.4 

8.9 ± 
0.5 

Zhao et 
al. 

(2004) 
 

Hair 1 M na RS -22.3 10.4 -23.6 9.2 
Aubail 
et al. 

(2011) 
Weddell 

Serum 17 M na RS/AS -24.6 
± 0.6 

13.3 
± 0.8 

-24.3 ± 
0.6 

12.2 ± 
0.8 

Zhao et 
al. 

(2004) 
 

Serum 16 F na RS/AS -25.3 
± 0.9 

12.5 
± 1.1 

-25.0 ± 
0.9 

11.4 ± 
1.1 

Zhao et 
al. 

(2004) 
 

Serum 22 na Adult  RS/AS -24.9 
± 0.8 

13.0 
± 0.9 

-24.6 ± 
0.8 

11.9 ± 
0.9 

Zhao et 
al. 

(2004) 
 

Serum 4 na Subadul
t  RS/AS -25.5 

± 0.9 
11.5 
± 1.1 

-25.2 ± 
0.9 

10.4 ± 
1.1 

Zhao et 
al. 

(2004) 
 

Serum 6 na Juvenile RS/AS -24.8 
± 1.0 

13.1 
± 1.0 

-24.5 ± 
1.0 

12.0 ± 
1.0 

Zhao et 
al. 

(2004) 
 

Serum 1 na Pup RS/AS -25.2 13.4 -24.9 12.3 
Zhao et 

al. 
(2004) 

 
Plasma 12 na Adult RS -25.5 

± 0.1 
13.1 
± 0.2 

-24.9 ± 
0.1 

12.4 ± 
0.2 

Burns 
et al. 

(1998) 
 

Plasma 6 na 
Deep-
diving 

yearling  
RS -25.4 

± 0.2 
12.6 
± 0.2 

-24.8 ± 
0.2 

11.9 ± 
0.2 

Burns 
et al. 

(1998) 
 

Plasma 4 na NDR 
yearling RS -25.1 

± 0.2 
12.9 
± 0.1 

-24.5 ± 
0.2 

12.2 ± 
0.1 

Burns 
et al. 

(1998) 
 

Plasma 4 na 
Shallow
-diving 
yearling  

RS -23.5 
± 0.1 

13.3 
± 0.1 

-22.9 ± 
0.1 

12.6 ± 
0.1 

Burns 
et al. 

(1998) 
 

Plasma 16 na Pup RS -26.0 
± 0.2 

13.8 
± 0.1 

-25.4 ± 
0.2 

13.1 ± 
0.1 

Burns 
et al. 

(1998) 
 

Hair 12 na na RS -23.2 
± 0.1 

13.5 
± 0.2 

-24.6 ± 
0.1 

13.0 ± 
0.2 

Aubail 
et al. 

(2011) 
 Whisker 14 na na WAP -21.6 

± 0.6 
12.7 
± 0.7 

-23.0 ± 
0.6 

12.2 ± 
0.7 

Botta 
et al. 
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(2018) 
 

RBCs 116 na na RS -25.2 
± 0.3 

12.0± 
0.3 

-25.2 ± 
0.3 

12.3 ± 
0.3 

Goetz 
et al. 

(2017) 
Crabeater 

Serum 26 M na RS/AS -26.7 
± 0.9 

8.2 ± 
0.5 

-26.4 ± 
0.9 

7.1 ± 
0.5 

Zhao et 
al. 

(2004) 
 

Serum 15 F na RS/AS -26.5 
± 1.2 

8.4 ± 
0.4 

-26.2 ± 
1.2 

7.3 ± 
0.4 

Zhao et 
al. 

(2004) 
 

Serum 30 na Adult RS/AS -26.5 
± 1.0 

8.4 ± 
0.6 

-26.2 ± 
1.0 

7.3 ± 
0.6 

Zhao et 
al. 

(2004) 
 

Serum 4 na Subadul
t RS/AS -26.1 

± 1.2 
8.4 ± 
0.3 

-25.8 ± 
1.2 

7.3 ± 
0.3 

Zhao et 
al. 

(2004) 
 

Serum 3 na Juvenile RS/AS -27.2 
± 1.2 

8.0 ± 
0.1 

-26.9 ± 
1.2 

7.9 ± 
0.1 

Zhao et 
al. 

(2004) 
 

Serum 4 na Pup RS/AS -27.4 
± 0.4 

7.7 ± 
0.1 

-27.1 ± 
0.4 

6.6  ± 
0.1 

Zhao et 
al. 

(2004) 
 

Hair 33 na na RS -24.3 
± 0.1 

7.7 ± 
0.1 

-25.9 ± 
0.1 

7.7 ± 
0.1 

Aubail 
et al. 

(2011) 
 

Whisker 13 na na WAP -23.0 
± 0.6 

7.0 ± 
0.8 

-24.6 ± 
0.6 

7.0 ± 
0.8 

Botta 
et al. 

(2018) 
 234 
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