1,568 research outputs found

    Proton conductivity versus acidic strength of one-pot synthesized acidic functionalized SBA-15 Mesoporous silica

    Get PDF
    International audienceThis paper reports the one-pot synthesis and characterization of functionalized mesoporous SBA-15 silica, containing two loadings of different acid groups (-CO2H, -PO(OH)2 and -SO3H). The thermodynamic features of the water confined in these porous silicas is investigated by Differential Scanning Calorimetry (DSC). The results show that the melting behaviour of the confined water is mainly governed by the pore diameter and, as a consequence, indicate that the chemical "decoration" of the porous surface does not play any key role on water thermodynamics in that case. On the contrary, the proton conductivity of the hydrated mesoporous materials, examined in a wide range of temperatures (-100 to 70°C), turns out to be strongly dependent on both the physical state of the confined water and the acidity of the functions located at the porous surface. The proton conductivity is shown to be directly related to the pKa and the density of the functional groups attached to the mesopore surface. The high conductivity values obtained at low temperature when the confined water is frozen, let us think that the -SO3H functionalized SBA-15 investigated here could be promising candidates for electrolyte solids applications in fuel cells

    Synthesis of Functionalised 3-Isochromanones by Silylcarbocyclisation/Desilylation Reactions

    Get PDF
    A new protocol for the synthesis of 3-isochromanone derivatives based on rhodium-promoted silylcarbocyclisation reactions of ethynylbenzyl alcohol with different arylsilanes is described. The structure of the isochromanone depends upon the reaction conditions used: when the reaction is carried out without base, (Z)-4-(aryldimethylsilyl)methylene]isochroman-3-ones are obtained as major products. These compounds can be submitted to a desilylation/aryl migration reaction to give 4-(arylmethyl)isochroman-3-ones in high yields. In contrast, in the presence of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), hydrogenation of methyleneisochroman-3-ones takes place, and the corresponding -(silylmethyl)-3-isochromanones are formed. Moreover, when internal alkynes are treated with hydrosilanes under silylcarbocyclisation reaction conditions, alcoholysis of the hydrosilanes occurs exclusively

    Deep Learning Analyses to Delineate the Molecular Remodeling Process after Myocardial Infarction

    Get PDF
    Specific proteins and processes have been identified in post-myocardial infarction (MI) pathological remodeling, but a comprehensive understanding of the complete molecular evolution is lacking. We generated microarray data from swine heart biopsies at baseline and 6, 30, and 45 days after infarction to feed machine-learning algorithms. We cross-validated the results using available clinical and experimental information. MI progression was accompanied by the regulation of adipogenesis, fatty acid metabolism, and epithelial-mesenchymal transition. The infarct core region was enriched in processes related to muscle contraction and membrane depolarization. Angiogenesis was among the first morphogenic responses detected as being sustained over time, but other processes suggesting post-ischemic recapitulation of embryogenic processes were also observed. Finally, protein-triggering analysis established the key genes mediating each process at each time point, as well as the complete adverse remodeling response. We modeled the behaviors of these genes, generating a description of the integrative mechanism of action for MI progression. This mechanistic analysis overlapped at different time points; the common pathways between the source proteins and cardiac remodeling involved IGF1R, RAF1, KPCA, JUN, and PTN11 as modulators. Thus, our data delineate a structured and comprehensive picture of the molecular remodeling process, identify new potential biomarkers or therapeutic targets, and establish therapeutic windows during disease progression

    Highly Sensitive Fluorescence Probe Based on Functional SBA-15 for Selective Detection of Hg2+

    Get PDF
    An inorganic–organic hybrid fluorescence chemosensor (DA/SBA-15) was prepared by covalent immobilization of a dansylamide derivative into the channels of mesoporous silica material SBA-15 via (3-aminopropyl)triethoxysilane (APTES) groups. The primary hexagonally ordered mesoporous structure of SBA-15 was preserved after the grafting procedure. Fluorescence characterization shows that the obtained inorganic–organic hybrid composite is highly selective and sensitive to Hg2+ detection, suggesting the possibility for real-time qualitative or quantitative detection of Hg2+ and the convenience for potential application in toxicology and environmental science

    Synthesis and Characterization of Hybrid Materials Consisting of n-octadecyltriethoxysilane by Using n-Hexadecylamine as Surfactant and Q0 and T0 Cross-Linkers

    Get PDF
    Novel hybrid xerogel materials were synthesized by a sol-gel procedure. n-octadecyltriethoxysilane was co-condensed with and without different cross-linkers using Q0 and T0 mono-functionalized organosilanes in the presence of n-hexadecylamine with different hydroxyl silica functional groups at the surface. These polymer networks have shown new properties, for example, a high degree of cross-linking and hydrolysis. Two different synthesis steps were carried out: simple self-assembly followed by sol-gel transition and precipitation of homogenous sols. Due to the lack of solubility of these materials, the compositions of the new materials were determined by infrared spectroscopy, 13C and 29Si CP/MAS NMR spectroscopy and scanning electron microscopy

    Coordinatively Saturated Tris(oxazolinyl)borato Zinc Hydride-Catalyzed Cross Dehydrocoupling of Silanes and Alcohols

    Get PDF
    The four-coordinate zinc compound ToMZnH (1, ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate) catalyzes selective alcoholysis of substituted hydrosilanes. The catalytic reaction of PhMeSiH2 and aliphatic alcohols favors the monodehydrocoupled product PhMeHSi–OR. With the aryl alcohol 3,5-C6H3Me2OH, the selectivity for mono(aryloxy)hydrosilane PhMeHSiOC6H3Me2 and bis(aryloxy)silane PhMeSi(OC6H3Me2)2 is controlled by relative reagent concentrations. Reactions of secondary organosilanes and diols provide cyclic bis(oxo)silacycloalkanes in high yield. The empirical rate law for the ToMZnH-catalyzed reaction of 3,5-dimethylphenol and PhMeSiH2 is −d[PhMeSiH2]/dt = kâ€Čobs[ToMZnH]1[3,5-C6H3Me2OH]0[PhMeSiH2]1 (determined at 96 °C) which indicates that Si–O bond formation is turnover-limiting in the presence of excess phenol

    Self-structuring of lamellar bridged silsesquioxanes with long side spacers

    Get PDF
    Diurea cross-linked bridged silsesquioxanes (BSs) C(10)C(11)C(10) derived from organosilane precursors, including decylene chains as side spacers and alkylene chains with variable length as central spacers (EtO)(3)Si- (CH(2))(10)-Y(CH(2))(n)-Y-(CH(2))(10)-Si(OEt)(3) (n = 7, 9-12; Y = urea group and Et = ethyl), have been synthesized through the combination of self-directed assembly and an acid-catalyzed sol gel route involving the addition of dimethylsulfoxide (DMSO) and a large excess of water. This new family of hybrids has enabled us to conclude that the length of the side spacers plays a unique role in the structuring of alkylene-based BSs, although their morphology remains unaffected. All the samples adopt a lamellar structure. While the alkylene chains are totally disordered in the case of the C(10)C(7)C(10) sample, a variable proportion of all-trans and gauche conformers exists in the materials with longer central spacers. The highest degree of structuring occurs for n = 9. The inclusion of decylene instead of propylene chains as side spacers leads to the formation of a stronger hydrogen-bonded urea-urea array as evidenced by two dimensional correlation Fourier transform infrared spectroscopic analysis. The emission spectra and emission quantum yields of the C(10)C(n)C(10) Cm materials are similar to those reported for diurea cross-linked alkylene-based BSs incorporating propylene chains as side spacers and prepared under different experimental conditions. The emission of the C(10)C(n)C(10) hybrids is ascribed to the overlap of two distinct components that occur within the urea cross-linkages and within the siliceous nanodomains. Time-resolved photoluminescence spectroscopy has provided evidence that the average distance between the siliceous domains and the urea cross-links is similar in the C(10)C(n)C(10) BSs and in oxyethylene-based hybrid analogues incorporating propylene chains as side spacers (diureasils), an indication that the longer side chains in the former materials adopt gauche conformations. It has also allowed us to demonstrate for the first time that the emission features of the urea-related component of the emission of alkylene-based BSs depend critically on the length of the side spacers
    • 

    corecore