1,100 research outputs found

    Fácil Determinación y sin Sesgo del Volumen del Seno Maxilar

    Get PDF
    Galdames, IS (Suazo Galdames, Ivan). Univ Talca, Talca, ChileDetermining the volume of the maxillary sinus is necessary in certain procedures. We present a simple method for estimating the volume of the maxillary sinus from groups 3, 5 and 9 coronal CT scan using the Cavalieri method combined with systematic sampling and evaluated randomized images. We used 10 dry skulls submitted to the TC. The actual volume was determined using silicone adapted to the maxillary sinus cavity. The estimated volume showed a high correlation with real volume, with no differences between groups. We concluded that it is possible to estimate without bias and with high accuracy the volume of the maxillary sinus from a minimum of 3 CT images obtained through randomized systematic sampling and the proposed method

    A practical methodology of design of off-line reservoirs for reducing maximum water levels in urban channels

    Get PDF
    Indexación: Scopus.Flooding can often occur in many places due to the increasing trend of rainfall events (climate change), the urbanization process of a catchment area, or by an undersized urban channel. Reservoirs are used for limiting flooding since they can store an enough water volume. This research presents a practical procedure for sizing off-line reservoirs with an application in urban channels for places with space limitations. A complete formulation is presented, which can be easily used for designers and engineers for computing dimensions of off-line reservoirs. The formulation is applied to a case study located at the Cartagena de Indias, Colombia.https://www.sciencedirect.com/science/article/pii/S1877050920317439?via%3Dihu

    Depth of focus increase by multiplexing programmable diffractive lenses

    Get PDF
    A combination of several diffractive lenses written onto a single programmable liquid crystal display (LCD) is proposed for increasing the Depth of Focus (DOF) of the imaging system as a whole. The lenses are spatially multiplexed in a random scheme onto the LCD. The axial irradiance distribution produced by each lens overlaps with the next one producing an extended focal depth. To compare the image quality of the multiplexed lenses, the Modulation Transfer Function (MTF) is calculated. Finally we obtain the experimental Point Spread Functions (PSF) for these multiplexed lenses and experimental results in which an extended object is illuminated under spatially incoherent monochromatic light. We compare the images obtained in the focal plane and in some defocused planes with the single lens and with three multiplexed lenses. The experimental results confirm that the multiplexed lenses produce a high increase in the depth of focus.Fil: Iemmi, Claudio Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Campos, Juan. Universitat Autonoma de Barcelona; EspañaFil: Escalera, J. C.. Universitat Autonoma de Barcelona; EspañaFil: López Coronado, O. Universitat Autonoma de Barcelona; EspañaFil: Gimeno, R.. Universitat Autonoma de Barcelona; EspañaFil: Yzuel, María J.. Universitat Autonoma de Barcelona; Españ

    Spin qubits with electrically gated polyoxometalate molecules

    Full text link
    Spin qubits offer one of the most promising routes to the implementation of quantum computers. Very recent results in semiconductor quantum dots show that electrically-controlled gating schemes are particularly well-suited for the realization of a universal set of quantum logical gates. Scalability to a larger number of qubits, however, remains an issue for such semiconductor quantum dots. In contrast, a chemical bottom-up approach allows one to produce identical units in which localized spins represent the qubits. Molecular magnetism has produced a wide range of systems with tailored properties, but molecules permitting electrical gating have been lacking. Here we propose to use the polyoxometalate [PMo12O40(VO)2]q-, where two localized spins-1/2 can be coupled through the electrons of the central core. Via electrical manipulation of the molecular redox potential, the charge of the core can be changed. With this setup, two-qubit gates and qubit readout can be implemented.Comment: 9 pages, 6 figures, to appear in Nature Nanotechnolog

    Effect of inulin and probiotic bacteria on growth, survival, immune response, and prevalence of white spot syndrome virus (WSSV) in Litopenaeus vannamei cultured under laboratory conditions

    Get PDF
    The effect of inulin and probiotic bacteria on the growth, survival, immune response and viral prevalence of white spot syndrome virus (WSSV) in white shrimp was evaluated. Presumptive bacilli and lactic acid bacteria (LAB) were characterized for hemolytic and enzymatic activity, hydrophobicity and antagonism against Vibrio. Selected isolates (Bacilli and LAB) were included in the diet of juvenile shrimp. Two bioassays were conducted with treatments by triplicate (10 shrimp per replicate) with inulin and inulin and bacteria. Fourteen LAB and six bacilli isolates had potential as probiotics. Survival and growth was not affected by the addition of the inulin and bacteria to diet. Inulin and bacteria improved immunity in cultured shrimp. Also, these feed additives reduced the prevalence of WSSV in cultured shrimp.Keywords: Probiotics, prebiotics, white spot syndrome virus (WSSV), immune system, Litopenaeus vannameiAfrican Journal of Biotechnology Vol. 12(21), pp. 3366-337

    REVIEW OF CFD SIMULATION OF OXY-COAL COMBUSTION FOR ELETRICAL POWER GENERATION: OPPORTUNITIES AND CHALLENGES

    Get PDF
    The oxy-combustion has generated significant interested for reduction of CO2 emission when the fossil fuel is coal, due to simplification on the separation process of CO2 from the flue gas, it can be more easily stored in reservoir. The CFD numerical simulation techniques in oxy-coal combustion has the potential to contribute to designers in cost savings and reduced computational time; Furthermore, such techniques also provide a robust tool for better understanding and description of the aerothermodynamics processes involved, as well as, aiding the design of most efficient furnaces. However, to obtain representative results of the physical phenomena, the numerical models employed by CFD needs to be suitable for oxy-coal combustion. So, the aim of the paper is to carry out a review of the recent models that are being used for turbulence, combustion and pollutant emissions. Moreover, it is shown a comparison of different results obtained in the numerical simulation of oxy-coal combustion among new models, existing models and experiments. The analysis of the models and experiments shows that the challenges that are still being faced to obtain better accuracy of numerical simulation results. Improvements in the models for oxy-coal combustion can be seen like potential opportunities to investigate and optimize the process that occur in the combustion

    Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

    Full text link
    Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbeletche, L.; Bordas, P.; Bosnjak, Z.; Bottacini, E.; Bozhilov, V.; Bregeon, J.; Brill, A.; Bringmann, T.; Brown, A. M.; Brun, P.; Brun, F.; Bruno, P.; Bulgarelli, A.; Burton, M.; Burtovoi, A.; Buscemi, M.; Cameron, R.; Capasso, M.; Caproni, A.; Capuzzo-Dolcetta, R.; Caraveo, P.; Carosi, R.; Carosi, A.; Casanova, S.; Cascone, E.; Cassol, F.; Catalani, F.; Cauz, D.; Cerruti, M.; Chadwick, P.; Chaty, S.; Chen, A.; Chernyakova, M.; Chiaro, G.; Chiavassa, A.; Chikawa, M.; Chudoba, J.; Çolak, M.; Conforti, V.; Coniglione, R.; Conte, F.; Contreras, J. L.; Coronado-Blazquez, J.; Costa, A.; Costantini, H.; Cotter, G.; Cristofari, P.; D'Aimath, A.; D'Ammando, F.; Damone, L. A.; Daniel, M. K.; Dazzi, F.; De Angelis, A.; De Caprio, V.; de Cássia dos Anjos, R.; de Gouveia Dal Pino, E. M.; De Lotto, B.; De Martino, D.; de Oña Wilhelmi, E.; De Palma, F.; de Souza, V.; Delgado, C.; Delgado Giler, A. G.; della Volpe, D.; Depaoli, D.; Di Girolamo, T.; Di Pierro, F.; Di Venere, L.; Diebold, S.; Dmytriiev, A.; Domínguez, A.; Donini, A.; Doro, M.; Ebr, J.; Eckner, C.; Edwards, T. D. P.; Ekoume, T. R. N.; Elsässer, D.; Evoli, C.; Falceta-Goncalves, D.; Fedorova, E.; Fegan, S.; Feng, Q.; Ferrand, G.; Ferrara, G.; Fiandrini, E.; Fiasson, A.; Filipovic, M.; Fioretti, V.; Fiori, M.; Foffano, L.; Fontaine, G.; Fornieri, O.; Franco, F. J.; Fukami, S.; Fukui, Y.; Gaggero, D.; Galaz, G.; Gammaldi, V.; Garcia, E.; Garczarczyk, M.; Gascon, D.; Gent, A.; Ghalumyan, A.; Gianotti, F.; Giarrusso, M.; Giavitto, G.; Giglietto, N.; Giordano, F.; Giuliani, A.; Glicenstein, J.; Gnatyk, R.; Goldoni, P.; González, M. M.; Gourgouliatos, K.; Granot, J.; Grasso, D.; Green, J.; Grillo, A.; Gueta, O.; Gunji, S.; Halim, A.; Hassan, T.; Heller, M.; Hernández Cadena, S.; Hiroshima, N.; Hnatyk, B.; Hofmann, W.; Holder, J.; Horan, D.; Hörandel, J.; Horvath, P.; Hovatta, T.; Hrabovsky, M.; Hrupec, D.; Hughes, G.; Humensky, T. B.; Hütten, M.; Iarlori, M.; Inada, T.; Inoue, S.; Iocco, F.; Iori, M.; Jamrozy, M.; Janecek, P.; Jin, W.; Jouvin, L.; Jurysek, J.; Karukes, E.; Katarzyński, K.; Kazanas, D.; Kerszberg, D.; Kherlakian, M. C.; Kissmann, R.; Knödlseder, J.; Kobayashi, Y.; Kohri, K.; Komin, N.; Kubo, H.; Kushida, J.; Lamanna, G.; Lapington, J.; Laporte, P.; Leigui de Oliveira, M. A.; Lenain, J.; Leone, F.; Leto, G.; Lindfors, E.; Lohse, T.; Lombardi, S.; Longo, F.; Lopez, A.; López, M.; López-Coto, R.; Loporchio, S.; Luque-Escamilla, P. L.; Mach, E.; Maggio, C.; Maier, G.; Mallamaci, M.; Malta Nunes de Almeida, R.; Mandat, D.; Manganaro, M.; Mangano, S.; Manicò, G.; Marculewicz, M.; Mariotti, M.; Markoff, S.; Marquez, P.; Martí, J.; Martinez, O.; Martínez, M.; Martínez, G.; Martínez-Huerta, H.; Maurin, G.; Mazin, D.; Mbarubucyeye, J. D.; Medina Miranda, D.; Meyer, M.; Miceli, M.; Miener, T.; Minev, M.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Mode, B.; Moderski, R.; Mohrmann, L.; Molina, E.; Montaruli, T.; Moralejo, A.; Morcuende-Parrilla, D.; Morselli, A.; Mukherjee, R.; Mundell, C.; Nagai, A.; Nakamori, T.; Nemmen, R.; Niemiec, J.; Nieto, D.; Nikołajuk, M.; Ninci, D.; Noda, K.; Nosek, D.; Nozaki, S.; Ohira, Y.; Ohishi, M.; Ohtani, Y.; Oka, T.; Okumura, A.; Ong, R. A.; Orienti, M.; Orito, R.; Orlandini, M.; Orlando, S.; Orlando, E.; Ostrowski, M.; Oya, I.; Pagano, I.; Pagliaro, A.; Palatiello, M.; Pantaleo, F. R.; Paredes, J. M.; Pareschi, G.; Parmiggiani, N.; Patricelli, B.; Pavletić, L.; Pe'er, A.; Pecimotika, M.; Pérez-Romero, J.; Persic, M.; Petruk, O.; Pfrang, K.; Piano, G.; Piatteli, P.; Pietropaolo, E.; Pillera, R.; Pilszyk, B.; Pintore, F.; Pohl, M.; Poireau, V.; Prado, R. R.; Prandini, E.; Prast, J.; Principe, G.; Prokoph, H.; Prouza, M.; Przybilski, H.; Pühlhofer, G.; Pumo, M. L.; Queiroz, F.; Quirrenbach, A.; Rainò, S.; Rando, R.; Razzaque, S.; Recchia, S.; Reimer, O.; Reisenegger, A.; Renier, Y.; Rhode, W.; Ribeiro, D.; Ribó, M.; Richtler, T.; Rico, J.; Rieger, F.; Rinchiuso, L.; Rizi, V.; Rodriguez, J.; Rodriguez Fernandez, G.; Rodriguez Ramirez, J. C.; Rojas, G.; Romano, P.; Romeo, G.; Rosado, J.; Rowell, G.; Rudak, B.; Russo, F.; Sadeh, I.; Sæther Hatlen, E.; Safi-Harb, S.; Salesa Greus, F.; Salina, G.; Sanchez, D.; Sánchez-Conde, M.; Sangiorgi, P.; Sano, H.; Santander, M.; Santos, E. M.; Santos-Lima, R.; Sanuy, A.; Sarkar, S.; Saturni, F. G.; Sawangwit, U.; Schussler, F.; Schwanke, U.; Sciacca, E.; Scuderi, S.; Seglar-Arroyo, M.; Sergijenko, O.; Servillat, M.; Seweryn, K.; Shalchi, A.; Sharma, P.; Shellard, R. C.; Siejkowski, H.; Silk, J.; Siqueira, C.; Sliusar, V.; Słowikowska, A.; Sokolenko, A.; Sol, H.; Spencer, S.; Stamerra, A.; Stanič, S.; Starling, R.; Stolarczyk, T.; Straumann, U.; Strišković, J.; Suda, Y.; Suomijarvi, T.; Świerk, P.; Tavecchio, F.; Taylor, L.; Tejedor, L. A.; Teshima, M.; Testa, V.; Tibaldo, L.; Todero Peixoto, C. J.; Tokanai, F.; Tonev, D.; Tosti, G.; Tosti, L.; Tothill, N.; Truzzi, S.; Travnicek, P.; Vagelli, V.; Vallage, B.; Vallania, P.; van Eldik, C.; Vandenbroucke, J.; Varner, G. S.; Vassiliev, V.; Vázquez Acosta, M.; Vecchi, M.; Ventura, S.; Vercellone, S.; Vergani, S.; Verna, G.; Viana, A.; Vigorito, C. F.; Vink, J.; Vitale, V.; Vorobiov, S.; Vovk, I.; Vuillaume, T.; Wagner, S. J.; Walter, R.; Watson, J.; Weniger, C.; White, R.; White, M.; Wiemann, R.; Wierzcholska, A.; Will, M.; Williams, D. A.; Wischnewski, R.; Yanagita, S.; Yang, L.; Yoshikoshi, T.; Zacharias, M.; Zaharijas, G.; Zakaria, A. A.; Zampieri, L.; Zanin, R.; Zaric, D.; Zavrtanik, M.; Zavrtanik, D.; Zdziarski, A. A.; Zech, A.; Zechlin, H.; Zhdanov, V. I.; Živec, M.-- This is an open access article published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies. © 2021 The Author(s).We gratefully acknowledge financial support from the following agencies and organisations: State Committee of Science of Armenia, Armenia; The Australian Research Council, Astronomy Australia Ltd, The University of Adelaide, Australian National University, Monash University, The University of New South Wales, The University of Sydney, Western Sydney University, Australia; Federal Ministry of Education, Science and Research, and Innsbruck University, Austria; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministry of Science, Technology, Innovations and Communications (MCTIC), and Instituto Serrapilheira, Brasil; Ministry of Education and Science, National RI Roadmap Project DO1-153/28.08.2018, Bulgaria; The Natural Sciences and Engineering Research Council of Canada and the Canadian Space Agency, Canada; CONICYT-Chile grants CATA AFB 170002, ANID PIA/APOYO AFB 180002, ACT 1406, FONDECYT-Chile grants, 1161463, 1170171, 1190886, 1171421, 1170345, 1201582, Gemini-ANID 32180007, Chile; Croatian Science Foundation, Rudjer Boskovic Institute, University of Osijek, University of Rijeka, University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia; Ministry of Education, Youth and Sports, MEYS LM2015046, LM2018105, LTT17006, EU/MEYS CZ.02.1.01/0.0/0.0/16_013/0001403, CZ.02.1.01/0.0/0.0/18_046/0016007 and CZ.02.1.01/0.0/0.0/16_019/0000754, Czech Republic; Academy of Finland (grant nr.317636, 320045, 317383 and 320085), Finland; Ministry of Higher Education and Research, CNRS-INSU and CNRS-IN2P3, CEA-Irfu, ANR, Regional Council Ile de France, Labex ENIGMASS, OSUG2020, P2IO and OCEVU, France; Max Planck Society, BMBF, DESY, Helmholtz Association, Germany; Department of Atomic Energy, Department of Science and Technology, India; Istituto Nazionale di Astrofisica (INAF), Istituto Nazionale di Fisica Nucleare (INFN), MIUR, Istituto Nazionale di Astrofisica (INAF-OABRERA) Grant Fondazione Cariplo/Regione Lombardia ID 2014-1980/RST_ERC, Italy; ICRR, University of Tokyo, JSPS, MEXT, Japan; Netherlands Research School for Astronomy (NOVA), Netherlands Organization for Scientific Research (NWO), Netherlands; University of Oslo, Norway; Ministry of Science and Higher Education, DIR/WK/2017/12, the National Centre for Research and Development and the National Science Centre, UMO-2016/22/M/ST9/00583, Poland; Slovenian Research Agency, grants P1-0031, P1-0385, I0-0033, J1-9146, J1-1700, N1-0111, and the Young Researcher program, Slovenia; South African Department of Science and Technology and National Research Foundation through the South African Gamma-Ray Astronomy Programme, South Africa; The Spanish Ministry of Science and Innovation and the Spanish Research State Agency (AEI) through grants AYA2016-79724-C4-1-P, AYA2016-80889-P, AYA2016-76012-C3-1-P, BES-2016-076342, ESP2017-87055-C2-1-P, FPA2017-82729-C6-1-R, FPA2017-82729-C6-2-R, FPA2017-82729-C6-3-R, FPA2017-82729-C6-4-R, FPA2017-82729-C6-5-R, FPA2017-82729-C6-6-R, PGC2018-095161-B-I00, PGC2018-095512-B-I00; the \Centro de Excelencia Severo Ochoa"program through grants no. SEV-2015-0548, SEV-2016-0597, SEV-2016-0588, SEV-2017-0709; the "Unidad de Excelencia Maria de Maeztu" program through grant no. MDM-2015-0509; the "Ramon y Cajal" programme through grants RYC-2013-14511, RyC-2013-14660, RYC-2017-22665; and the MultiDark Consolider Network FPA2017-90566-REDC. Atraccion de Talento contract no. 2016-T1/TIC-1542 granted by the Comunidad de Madrid; the "Postdoctoral Junior Leader Fellowship" programme from La Caixa Banking Foundation, grants no. LCF/BQ/LI18/11630014 and LCF/BQ/PI18/11630012; the "Programa Operativo" FEDER2014-2020, Consejeria de Economia y Conocimiento de la Junta de Andalucia (ref. 1257737), PAIDI 2020 (ref. P18-FR-1580), and Universidad de Jaen; the Spanish AEI EQC2018-005094-P FEDER 2014-2020; the European Union's "Horizon 2020" research and innovation programme under Marie Sklodowska-Curie grant agreement no. 665919; and the ESCAPE project with grant no. GA:824064, Spain; Swedish Research Council, Royal Physiographic Society of Lund, Royal Swedish Academy of Sciences, The Swedish National Infrastructure for Computing (SNIC) at Lunarc (Lund), Sweden; State Secretariat for Education, Research and Innovation (SERI) and Swiss National Science Foundation (SNSF), Switzerland; Durham University, Leverhulme Trust, Liverpool University, University of Leicester, University of Oxford, Royal Society, Science and Technology Facilities Council, U.K.; U.S. National Science Foundation, U.S. Department of Energy, Argonne National Laboratory, Barnard College, University of California, University of Chicago, Columbia University, Georgia Institute of Technology, Institute for Nuclear and Particle Astrophysics (INPAC-MRPI program), Iowa State University, the Smithsonian Institution, Washington University McDonnell Center for the Space Sciences, The University of Wisconsin and the Wisconsin Alumni Research Foundation, U.S.A. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreements No 262053 and No 317446. This project is receiving funding from the European Union's Horizon 2020 research and innovation programs under agreement No 676134.Peer reviewe

    Peptides as Versatile Platforms for Quantum Computing

    Get PDF
    The pursuit of novel functional building blocks for the emerging field of quantum computing is one of the most appealing topics in the context of quantum technologies. Herein we showcase the urgency of introducing peptides as versatile platforms for quantum computing. In particular, we focus on lanthanide-binding tags, originally developed for the study of protein structure. We use pulsed electronic paramagnetic resonance to demonstrate quantum coherent oscillations in both neodymium and gadolinium peptidic qubits. Calculations based on density functional theory followed by a ligand field analysis indicate the possibility of influencing the nature of the spin qubit states by means of controlled changes in the peptidic sequence. We conclude with an overview of the challenges and opportunities opened by this interdisciplinary field

    Contractual arrangements and food quality certifications in the Mexican avocado industry

    Full text link
    corecore