243 research outputs found

    An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: consensus statement on behalf of the ERA Working Group on Inherited Kidney Disorders, the European Rare Kidney Disease Reference Network and Polycystic Kidney Disease International

    Full text link
    Approval of the vasopressin V2 receptor antagonist tolvaptan-based on the landmark TEMPO 3:4 trial-marked a transformation in the management of autosomal dominant polycystic kidney disease (ADPKD). This development has advanced patient care in ADPKD from general measures to prevent progression of chronic kidney disease to targeting disease-specific mechanisms. However, considering the long-term nature of this treatment, as well as potential side effects, evidence-based approaches to initiate treatment only in patients with rapidly progressing disease are crucial. In 2016, the position statement issued by the European Renal Association (ERA) was the first society-based recommendation on the use of tolvaptan and has served as a widely used decision-making tool for nephrologists. Since then, considerable practical experience regarding the use of tolvaptan in ADPKD has accumulated. More importantly, additional data from REPRISE, a second randomized clinical trial (RCT) examining the use of tolvaptan in later-stage disease, have added important evidence to the field, as have post hoc studies of these RCTs. To incorporate this new knowledge, we provide an updated algorithm to guide patient selection for treatment with tolvaptan and add practical advice for its use

    Clinical spectrum, prognosis and estimated prevalence of DNAJB11-kidney disease

    Get PDF
    Monoallelic mutations of DNAJB11 were recently described in seven pedigrees with atypical clinical presentations of autosomal dominant polycystic kidney disease. DNAJB11 encodes one of the main cofactors of the endoplasmic reticulum chaperon BiP, a heat-shock protein required for efficient protein folding and trafficking. Here we conducted an international collaborative study to better characterize the DNAJB11-associated phenotype. Thirteen different loss-of-function variants were identified in 20 new pedigrees (54 affected individuals) by targeted next-generation sequencing, whole-exome sequencing or whole-genome sequencing. Amongst the 77 patients (27 pedigrees) now in total reported, 32 reached end stage kidney disease (range, 55-89 years, median age 75); without a significant difference between males and females. While a majority of patients presented with non-enlarged polycystic kidneys, renal cysts were inconsistently identified in patients under age 45. Vascular phenotypes, including intracranial aneurysms, dilatation of the thoracic aorta and dissection of a carotid artery were present in four pedigrees. We accessed Genomics England 100,000 genomes project data, and identified pathogenic variants of DNAJB11 in nine of 3934 probands with various kidney and urinary tract disorders. The clinical diagnosis was cystic kidney disease for eight probands and nephrocalcinosis for one proband. No additional pathogenic variants likely explaining the kidney disease were identified. Using the publicly available GnomAD database, DNAJB11 genetic prevalence was calculated at 0.85/10.000 individuals. Thus, establishing a precise diagnosis in atypical cystic or interstitial kidney disease is crucial, with important implications in terms of follow-up, genetic counseling, prognostic evaluation, therapeutic management, and for selection of living kidney donors

    An artificial intelligence generated automated algorithm to measure total kidney volume in ADPKD

    Get PDF
    Introduction Accurate tools to inform individual prognosis in patients with autosomal dominant polycystic kidney disease (ADPKD) are lacking. Here, we report an artificial intelligence (AI) generated method for routinely measuring total kidney volume (TKV). Methods An ensemble U-net algorithm was created using the nnUNet approach. The training and internal cross-validation cohort consisted of all 1.5T MRI data acquired using 5 different MRI scanners (454 kidneys, 227 scans) in the CYSTic consortium which was first manually segmented by a single human operator. As an independent validation cohort, we utilised 48 sequential clinical MRI scans with reference results of manual segmentation acquired by 6 individual analysts at a single centre. The tool was then implemented for clinical use and its performance analysed. Results The training / internal validation cohort was younger (mean age 44.0 vs 51.5 years) and the female-male ratio higher (1.2 v 0.94) compared to the clinical validation cohort. The majority of CYSTic patients had PKD1 mutations (79%) and typical disease (Mayo Imaging Class 1, 86%). The median DICE score on the clinical validation dataset between the algorithm and human analysts was 0.96 for left and right kidneys with a median TKV error of -1.8%. The time taken to manually segment kidneys in the CYSTic dataset was 56 (±28) min whereas manual corrections of the algorithm output took 8.5 (±9.2) min per scan. Conclusions Our AI-based algorithm demonstrates performance comparable to manual segmentation. Its rapidity and precision in real-world clinical cases demonstrate its suitability for clinical application

    The prevalence of autosomal dominant polycystic kidney disease (ADPKD): A meta-analysis of European literature and prevalence evaluation in the Italian province of Modena suggest that ADPKD is a rare and underdiagnosed condition

    Get PDF
    ADPKD is erroneously perceived as a not rare condition, which is mainly due to the repeated citation of a mistaken interpretation of old epidemiological data, as reported in the Dalgaard's work (1957). Even if ADPKD is not a common condition, the correct prevalence of ADPKD in the general population is uncertain, with a wide range of estimations reported by different authors. In this work, we have performed a meta-analysis of available epidemiological data in the European literature. Furthermore we collected the diagnosis and clinical data of ADPKD in a province in the north of Italy (Modena). We describe the point and predicted prevalence of ADPKD, as well as the main clinical characteristics of ADPKD in this region

    An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: consensus statement on behalf of the ERA Working Group on Inherited Kidney Disorders, the European Rare Kidney Disease Reference Network and Polycystic Kidney Disease International

    Get PDF
    Approval of the vasopressin V2 receptor antagonist tolvaptan—based on the landmark TEMPO 3:4 trial—marked a transformation in the management of autosomal dominant polycystic kidney disease (ADPKD). This development has advanced patient care in ADPKD from general measures to prevent progression of chronic kidney disease to targeting disease-specific mechanisms. However, considering the long-term nature of this treatment, as well as potential side effects, evidence-based approaches to initiate treatment only in patients with rapidly progressing disease are crucial. In 2016, the position statement issued by the European Renal Association (ERA) was the first society-based recommendation on the use of tolvaptan and has served as a widely used decision-making tool for nephrologists. Since then, considerable practical experience regarding the use of tolvaptan in ADPKD has accumulated. More importantly, additional data from REPRISE, a second randomized clinical trial (RCT) examining the use of tolvaptan in later-stage disease, have added important evidence to the field, as have post hoc studies of these RCTs. To incorporate this new knowledge, we provide an updated algorithm to guide patient selection for treatment with tolvaptan and add practical advice for its use

    HUS and atypical HUS

    Get PDF
    Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy characterized by intravascular hemolysis, thrombocytopenia, and acute kidney failure. HUS is usually categorized as typical, caused by Shiga toxin-producing Escherichia coli (STEC) infection, as atypical HUS (aHUS), usually caused by uncontrolled complement activation, or as secondary HUS with a coexisting disease. In recent years, a general understanding of the pathogenetic mechanisms driving HUS has increased. Typical HUS (ie, STEC-HUS) follows a gastrointestinal infection with STEC, whereas aHUS is associated primarily with mutations or autoantibodies leading to dysregulated complement activation. Among the 30% to 50% of patients with HUS who have no detectable complement defect, some have either impaired diacylglycerol kinase epsilon (DGK epsilon) activity, cobalamin C deficiency, or plasminogen deficiency. Some have secondary HUS with a coexisting disease or trigger such as autoimmunity, transplantation, cancer, infection, certain cytotoxic drugs, or pregnancy. The common pathogenetic features in STEC-HUS, aHUS, and secondary HUS are simultaneous damage to endothelial cells, intravascular hemolysis, and activation of platelets leading to a procoagulative state, formation of microthrombi, and tissue damage. In this review, the differences and similarities in the pathogenesis of STEC-HUS, aHUS, and secondaryHUSare discussed. Commonfor the pathogenesis seems to be the vicious cycle of complement activation, endothelial cell damage, platelet activation, and thrombosis. This process can be stopped by therapeutic complement inhibition in most patients with aHUS, but usually not those with a DGK epsilon mutation, and some patients with STEC-HUS or secondary HUS. Therefore, understanding the pathogenesis of the different forms of HUS may prove helpful in clinical practice.Peer reviewe
    • …
    corecore