3 research outputs found

    Fully relativistic nonlinear cosmological evolution in spherical symmetry using the BSSN formalism

    Full text link
    We present a fully relativistic numerical method for the study of cosmological problems using the Baumgarte-Shapiro-Shibata-Nakamura formalism on a dynamical Friedmann-Lema\^itre-Robertson-Walker background. This has many potential applications including the study of the growth of structures beyond the linear regime. We present one such application by reproducing the Lema\^itre-Tolman-Bondi solution for the collapse of pressureless matter with arbitrary lapse function. The regular and smooth numerical solution at the center of coordinates proceeds in a natural way by relying on the Partially Implicit Runge-Kutta algorithm described in Montero and Cordero-Carri\'on [arXiv:1211.5930]. We generalize the usual radiative outer boundary condition to the case of a dynamical background and show the stability and convergence properties of the method in the study of pure gauge dynamics on a de Sitter background.Comment: 11 pages, 12 figure

    Meteor studies in the framework of the JEM-EUSO program

    Get PDF
    Abstract We summarize the state of the art of a program of {UV} observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large {FOV} and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the {ISS} itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software
    corecore