805 research outputs found

    On the Optical -- X-ray correlation from outburst to quiescence in Low Mass X-ray Binaries: the representative cases of V404 Cyg and Cen X-4

    Get PDF
    Low mass X-ray binaries (LMXBs) show evidence of a global correlation of debated origin between X-ray and optical luminosity. We study for the first time this correlation in two transient LMXBs, the black hole V404 Cyg and the neutron star Cen X-4, over 6 orders of magnitude in X-ray luminosity, from outburst to quiescence. After subtracting the contribution from the companion star, the Cen X-4 data can be described by a single power law correlation of the form LoptLX0.44L_{opt}\propto\,L_{X}^{0.44}, consistent with disk reprocessing. We find a similar correlation slope for V404 Cyg in quiescence (0.46) and a steeper one (0.56) in the outburst hard state of 1989. However, V404 Cyg is about 160280160-280 times optically brighter, at a given 393-9 keV X-ray luminosity, compared to Cen X-4. This ratio is a factor of 10 smaller in quiescence, where the normalization of the V404 Cyg correlation also changes. We show that once the bolometric X-ray emission is considered and the known main differences between V404 Cyg and Cen X-4 are taken into account (a larger compact object mass, accretion disk size, and the presence of a strong jet contribution in the hard state for the black hole system) the two systems lie on the same correlation. In V404 Cyg, the jet dominates spectrally at optical-infrared frequencies during the hard state, but makes a negligible contribution in quiescence, which may account for the change in its correlation slope and normalization. These results provide a benchmark to compare with data from the 2015 outburst of V404 Cyg and, potentially, other transient LMXBs as well.Comment: Accepted on ApJ, 12 pages, 4 figures, 4 table

    Determining the optimal locations for shock acceleration in magnetohydrodynamical jets

    Full text link
    Observations of relativistic jets from black holes systems suggest that particle acceleration often occurs at fixed locations within the flow. These sites could be associated with critical points that allow the formation of standing shock regions, such as the magnetosonic modified fast point. Using the self-similar formulation of special relativistic magnetohydrodynamics by Vlahakis & K\"onigl, we derive a new class of flow solutions that are both relativistic and cross the modified fast point at a finite height. Our solutions span a range of Lorentz factors up to at least 10, appropriate for most jets in X-ray binaries and active galactic nuclei, and a range in injected particle internal energy. A broad range of solutions exists, which will allow the eventual matching of these scale-free models to physical boundary conditions in the analysis of observed sources.Comment: 9 pages, 4 figures, accepted for publication in Ap

    X-ray states and radio emission in the black hole candidate XTE J1550-564

    Get PDF
    We report on radio and X-ray observations of the black hole candidate (BHC) XTE J1550-564 performed during its 2000 X-ray outburst. Observations have been conducted with the Australia Telescope Compact Array (ATCA) and have allowed us to sample the radio behavior of XTE J1550-564 in the X-ray Low Hard and Intermediate/Very High states. We observed optically thin radio emission from XTE J1550-564 five days after a transition to an Intermediate/Very High state, but we observed no radio emission six days later, while XTE J1550-564 was still in the Intermediate/Very High state. In the Low Hard state, XTE J1550-564 is detected with an inverted radio spectrum. The radio emission in the Low Hard state most likely originates from a compact jet; optical observations suggest that the synchrotron emission from this jet may extend up to the optical range. The total power of the compact jet might therefore be a significant fraction of the total luminosity of the system. We suggest that the optically thin synchrotron radio emission detected five days after the transition to the Intermediate/Very High state is due to a discrete ejection of relativistic plasma during the state transition. Subsequent to the decay of the optically thin radio emission associated with the state transition, it seems that in the Intermediate/Very High state the radio emission is quenched by a factor greater than 50, implying a suppression of the outflow. We discuss the properties of radio emission in the X-ray states of BHCs.Comment: 15 pages, including 3 figures. Accepted for publication in ApJ, scheduled for the vol. 553 Jun 1, 2001 issu

    Neutrino flares from black hole coronae

    Get PDF
    We present a model for neutrino flares in accreting black holes based on the injection of a non-thermal population of relativistic particles in a magnetized corona. The most important products of hadronic and photohadronic interactions at high energies are pions. Charged pions decay into muons and neutrinos; muons also decay yielding neutrinos. Taking into account these effects, coupled transport equations are solved for all species of particles and the neutrino production is estimated for the case of accreting galactic black holes.Comment: 13 pages, 8 figures, accepted for publication in Advances in Space Researc

    Detailed Radio to Soft Gamma-ray Studies of the 2005 Outburst of the New X-ray Transient XTE J1818-245

    Full text link
    XTE J1818-245 is an X-ray nova that experienced an outburst in 2005, first seen by the RXTE satellite. The source was observed simultaneously at various wavelengths up to soft gamma-rays with the INTEGRAL satellite, from 2005 February to September. X-ray novae are extreme systems that often harbor a black hole, and are known to emit throughout the electromagnetic spectrum when in outburst. We analyzed radio, (N)IR, optical, X-ray and soft gamma-ray observations and constructed simultaneous broad-band X-ray spectra. Analyzing both the light curves in various energy ranges and the hardness-intensity diagram enabled us to study the long-term behavior of the source. Spectral parameters were typical of the Soft Intermediate States and the High Soft States of a black hole candidate. The source showed relatively small spectral variations in X-rays with considerable flux variation in radio. Spectral studies showed that the accretion disc cooled down from 0.64 to 0.27 keV in 100 days and that the total flux decreased while the relative flux of the hot medium increased. Radio emission was detected several times, and, interestingly, five days after entering the HSS. Modeling the spectral energy distribution from the radio to the soft gamma-rays reveals that the radio flares arise from several ejection events. XTE J1818-245 is likely a black hole candidate transient source that might be closer than the Galactic Bulge. The results from the data analysis trace the physical changes that took place in the system at a maximum bolometric luminosity of (0.4-0.9)e38 erg/s (assuming a distance between 2.8-4.3 kpc) and they are discussed within the context of disc and jet models.Comment: Accepted for publication in Astronomy and Astrophysics. 11 Figures, 3 Table

    The Galactic black hole transient H1743-322 during outburst decay: connections between timing noise, state transitions and radio emission

    Get PDF
    Multi-wavelength observations of Galactic black hole transients during outburst decay are instrumental for our understanding of the accretion geometry and the formation of outflows around black hole systems. H1743-322, a black hole transient observed intensely in X-rays and also covered in the radio band during its 2003 decay, provides clues about the changes in accretion geometry during state transitions and also the general properties of X-ray emission during the intermediate and the low-hard states. In this work, we report on the evolution of spectral and temporal properties in X-rays and the flux in the radio band with the goal of understanding the nature of state transitions observed in this source. We concentrate on the transition from the thermal dominant state to the intermediate state that occurs on a timescale of one day. We show that the state transition is associated with a sudden increase in power-law flux. We determine that the ratio of the power-law flux to the overall flux in the 3--25 keV band must exceed 0.6 to observe strong timing noise. Even after the state transition, once this ratio was below 0.6, the system transited back to the thermal dominant state for a day. We show that the emission from the compact radio core does not turn on during the transition from the thermal dominant state to the intermediate state but does turn on when the source reaches the low-hard state, as seen in 4U 1543-47 and GX 339-4. We find that the photon index correlates strongly with the QPO frequency and anti-correlates with the rms amplitude of variability. We also show that the variability is more likely to be associated with the power-law emission than the disk emission.Comment: 23 pages, 5 Figures, 1 Table, accepted for publication in Ap

    X-Ray Emission from the Jets of XTE J1550-564

    Get PDF
    We report on X-ray observations of the the large-scale jets recently discovered in the radio and detected in X-rays from the black hole candidate X-ray transient and microquasar XTE J1550-564. On 11 March 2002, X-ray emission was detected 23 arcsec to the West of the black hole candidate and was extended along the jet axis with a full width at half maximum of 1.2 arcsec and a full width at 10% of maximum intensity of 5 arcsec. The morphology of the X-ray emission matched well to that of the radio emission at the same epoch. The jet moved by 0.52 +/- 0.13 arcsec between 11 March and 19 June 2002. The apparent speed during that interval was 5.2 +/- 1.3 mas/day. This is significantly less than the average apparent speed of 18.1 +/- 0.4 mas/day from 1998 to 2002, assuming that the jet was ejected in September 1998, and indicates that the jet has decelerated. The X-ray spectrum is adequately described by a powerlaw with a photon index near 1.8 subject to interstellar absorption. The unabsorbed X-ray flux was 3.4 x 10^-13 erg cm^-2 s^-1 in the 0.3-8 keV band in March 2002, and decreased to 2.9 x 10^-13 erg cm^-2 s^-1 in June. We also detect X-rays from the eastern jet in March 2002 and show that it has decelerated and dimmed since the previous detections in 2000.Comment: accepted for publication in ApJ, 11 pages, several figures in colo

    Optical and Near Infrared Monitoring of the Black-Hole X-ray Binary GX 339-4 During 2002-2010

    Get PDF
    We present the optical/infra-red lightcurve (O/IR) of the black hole X-ray binary GX 339-4 collected at the SMARTS 1.3m telescope from 2002 to 2010. During this time the source has undergone numerous state transitions including hard-to-soft state transitions when we see large changes in the near-IR flux accompanied by modest changes in optical flux, and three rebrightening events in 2003, 2005 and 2007 after GX 339-4 transitioned from the soft state to the hard. All but one outburst show similar behavior in the X-ray hardness-intensity diagram. We show that the O/IR colors follow two distinct tracks that reflect either the hard or soft X-ray state of the source. Thus, either of these two X-ray states can be inferred from O/IR observations alone. From these correlations we have constructed spectral energy distributions of the soft and hard states. During the hard state, the near-IR data have the same spectral slope as simultaneous radio data when GX 339-4 was in a bright optical state, implying that the near-IR is dominated by a non-thermal source, most likely originating from jets. Non-thermal emission dominates the near-IR bands during the hard state at all but the faintest optical states, and the fraction of non-thermal emission increases with increasing optical brightness. The spectral slope of the optical bands indicate that a heated thermal source is present during both the soft and hard X-ray states, even when GX 339-4 is at its faintest optical state. We have conducted a timing analysis of the light curve for the hard and soft states and find no evidence of a characteristic timescale within the range of 4-230 days.Comment: Accepted for publication in AJ, Table 3 can be viewed at http://www.astro.yale.edu/buxton/GX339

    A classification of the X-ray and radio states of Cyg X-3 and their long-term correlations

    Full text link
    We present a detailed classification of the X-ray states of Cyg X-3 based on the spectral shape and a new classification of the radio states based on the long-term correlated behaviour of the radio and soft X-ray light curves. We find a sequence of correlations, starting with a positive correlation between the radio and soft X-ray fluxes in the hard spectral state, changing to a negative one at the transition to soft spectral states. The temporal evolution can be in either direction on that sequence, unless the source goes into a very weak radio state, from which it can return only following a major radio flare. The flare decline is via relatively bright radio states, which results in a hysteresis loop on the flux-flux diagram. We also study the hard X-ray light curve, and find its overall anticorrelation with the soft X-rays. During major radio flares, the radio flux responds exponentially to the level of a hard X-ray high-energy tail. We also specify the detailed correspondence between the radio states and the X-ray spectral states. We compare our results to those of black-hole and neutron-star binaries. Except for the effect of strong absorption and the energy of the high-energy break in the hard state, the X-ray spectral states of Cyg X-3 closely correspond to the canonical X-ray states of black-hole binaries. Also, the radio/X-ray correlation closely corresponds to that found in black-hole binaries, but it significantly differs from that in neutron-star binaries. Overall, our results strongly support the presence of a black hole in Cyg X-3.Comment: MNRAS, in pres
    corecore