94 research outputs found

    Strain in Silica-Supported Ga(III) Sites : Neither Too Much nor Too Little for Propane Dehydrogenation Catalytic Activity

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICWell-defined Ga(III) sites on SiO are highly active, selective, and stable catalysts in the propane dehydrogenation (PDH) reaction. In this contribution, we evaluate the catalytic activity toward PDH of tricoordinated and tetracoordinated Ga(III) sites on SiO by means of first-principles calculations using realistic amorphous periodic SiO models. We evaluated the three reaction steps in PDH, namely, the C-H activation of propane to form propyl, the β-hydride (β-H) transfer to form propene and a gallium hydride, and the H-H coupling to release H, regenerating the initial Ga-O bond and closing the catalytic cycle. Our work shows how Brønsted-Evans-Polanyi relationships are followed to a certain extent for these three reaction steps on Ga(III) sites on SiO and highlights the role of the strain of the reactive Ga-O pairs on such sites of realistic amorphous SiO models. It also shows how transition-state scaling holds very well for the β-H transfer step. While highly strained sites are very reactive sites for the initial C-H activation, they are more difficult to regenerate. The corresponding less strained sites are not reactive enough, pointing to the need for the right balance in strain to be an effective site for PDH. Overall, our work provides an understanding of the intrinsic activity of acidic Ga single sites toward the PDH reaction and paves the way toward the design and prediction of better single-site catalysts on SiO for the PDH reaction. We performed computational calculations of Ga(III) single sites on realistic amorphous models of SiO to evaluate their catalytic activity toward the propane dehydrogenation reaction. Our results show that a balance in strain is key, in which neither too stiff nor too loose Ga−O bonding is needed to obtain the highest catalytic activity

    An element through the looking glass: Exploring the Au-C, Au-H and Au-O energy landscape

    Get PDF
    Gold, the archetypal “noble metal”, used to be considered of little interest in catalysis. It is now clear that this was a misconception, and a multitude of gold-catalysed transformations has been reported. However, one consequence of the long-held view of gold as inert metal is that its organometallic chemistry contains many “unknowns”, and catalytic cycles devised to explain gold's reactivity draw largely on analogies with other transition metals. How realistic are such mechanistic assumptions? In the last few years a number of key compound classes have been discovered that can provide some answers. This Perspective attempts to summarise these developments, with particular emphasis on recently discovered gold(III) complexes with bonds to hydrogen, oxygen, alkenes and CO ligands

    The time scale of recombination rate evolution in great apes

    Get PDF
    We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471-475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10-15Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- And between-species genome-wide recombination rate variation in several close relatives

    Strain in Silica-Supported Ga (III) Sites: Neither Too Much nor Too Little for Propane Dehydrogenation Catalytic Activity

    No full text
    Well-defined Ga(III) sites on SiO2 are highly active, selective, and stable catalysts in the propane dehydrogenation reaction. In this contribution, we evaluate the catalytic activity towards propane dehydrogenation of tri-coordinated and tetra-coordinated Ga(III) sites on SiO2 by means of first principles calculations using realistic amorphous periodic SiO2models. We evaluated the three reaction steps in propane dehydrogenation, namely the C-H activation of propane to form propyl, the beta-hydride elimination transfer to form propene, and a Ga-hydride, and the H-H coupling to release H2, regenerating the initial Ga-O bond and closing the catalytic cycle. Our work shows how Brønsted-Evans-Polanyi relationships are followed for these three reaction steps on Ga(III) sites on SiO2 and highlights the role of the strain of the reactive Ga-O pairs on such sites of realistic amorphous SiO2 models. While highly strained sites are very reactive sites for the initial C-H activation, they are more difficult to regenerate. The corresponding less strained sites are not reactive enough, pointing to the need of a right balance in strain to be an effective site for propane dehydrogenation. Overall, our work provides an understanding of the intrinsic activity of acidic Ga single sites towards the propane dehydrogenation reaction and paves the road towards the design and prediction of better single-site catalysts on SiO2 for the propane dehydrogenation reaction.</p

    Dynamics and Site Isolation : Keys to High Propane Dehydrogenation Performance of Silica-Supported PtGa Nanoparticles

    Get PDF
    Nonoxidative dehydrogenation of light alkanes has seen a renewed interest in recent years. While PtGa systems appear among the most efficient catalyst for this reaction and are now implemented in production plants, the origin of the high catalytic performance in terms of activity, selectivity, and stability in PtGa-based catalysts is largely unknown. Here we use molecular modeling at the DFT level on three different models: (i) periodic surfaces, (ii) clusters using static calculations, and (iii) realistic size silica-supported nanoparticles (1 nm) using molecular dynamics and metadynamics. The combination of the models with experimental data (XAS, TEM) allowed the refinement of the structure of silica-supported PtGa nanoparticles synthesized via surface organometallic chemistry and provided a structure-activity relationship at the molecular level. Using this approach, the key interaction between Pt and Ga was evidenced and analyzed: the presence of Ga increases (i) the interaction between the oxide surface and the nanoparticles, which reduces sintering, (ii) the Pt site isolation, and (iii) the mobility of surface atoms which promotes the high activity, selectivity, and stability of this catalyst. Considering the complete system for modeling that includes the silica support as well as the dynamics of the PtGa nanoparticle is essential to understand the catalytic performances

    Multiscale Modeling of Au-Island Ripening on Au(100)

    No full text
    We describe a multiscale modeling hierarchy for the particular case of Au-island ripening on Au(100). Starting at the microscopic scale, density functional theory was used to investigate a limited number of self-diffusion processes on perfect and imperfect Au(100) surfaces. The obtained structural and energetic information served as basis for optimizing a reactive forcefield (here ReaxFF), which afterwards was used to address the mesoscopic scale. Reactive force field simulations were performed to investigate more diffusion possibilities at a lower computational cost but with similar accuracy. Finally, we reached the macroscale by means of kinetic Monte Carlo (kMC) simulations. The reaction rates for the reaction process database used in the kMC simulations were generated using the reactive force field. Using this strategy, we simulated nucleation, aggregation, and fluctuation processes for monoatomic high islands on Au(100) and modeled their equilibrium shape structures. Finally, by calculating the step line tension at different temperatures, we were able to make a direct comparison with available experimental data

    Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies

    No full text
    Grafting molecular precursors on partially dehydroxylated silica followed by a thermal treatment yields silica-supported M(III) sites for a broad range of metals. They display unique properties such as high activity in olefin polymerization and alkane dehydrogenation (M = Cr) or efficient luminescence properties (M = Yb and Eu) essential for bioimaging. Here, we interrogate the local structure of the M(III) surface sites obtained from two molecular precursors, amides M(N(SiMe3)2)3 vs siloxides (M(OSi(OtBu)3)3·L with L = (THF)2 or HOSi(OtBu)3 for M = Cr, Yb, Eu, and Y, by a combination of advanced spectroscopic techniques (EPR, IR, XAS, UV-vis, NMR, luminescence spectroscopies). For paramagnetic Cr(III), EPR (HYSCORE) spectroscopy shows hyperfine coupling to nitrogen only when the amide precursor is used, consistent with the presence of nitrogen neighbors. This changes their specific reactivity compared to Cr(III) sites in oxygen environments obtained from siloxide precursors: no coordination of CO and oligomer formation during the polymerization of ethylene due to the presence of a N-donor ligand. The presence of the N-ligand also affects the photophysical properties of Yb and Eu by decreasing their lifetime, probably due to nonradiative deactivation of excited states by N-H bonds. Both types of precursors lead to a distribution of surface sites according to reactivity for Cr, luminescence spectroscopy for Yb and Eu, and dynamic nuclear polarization surface-enhanced 89Y NMR spectroscopy (DNP SENS). In particular, DNP SENS provides molecular-level information about the structure of surface sites by evidencing the presence of tri-, tetra-, and pentacoordinated Y-surface sites. This study provides unprecedented evidence and tools to assess the local structure of metal surface sites in relation to their chemical and physical properties. © 2017 American Chemical Society
    corecore