55 research outputs found

    Estrategias y recursos noolĂłgicos en mujeres sobrevivientes al cĂĄncer de seno

    Get PDF
    El presente es un ejercicio investigativo, direccionado a comprender las estrategias y los recursos noológicos empleados por tres mujeres sobrevivientes al cåncer de mama, para vivenciar y realizar el sentido de vida, haciendo uso de la fenomenología como método investigativo y el anålisis del discurso como estrategia

    The effectiveness evaluation of a multimedia hepatitis C prevention program for Hispanic HIV-infected individuals

    Get PDF
    Introduction—With the introduction of highly active antiretroviral therapy the Hepatitis C virus (HCV) infection has became a primary health problem among individuals suffering from HIV/ AIDS in Puerto Rico, principally those who are injecting drug users (IDUs). A multimedia educational intervention, based on the Health Beliefs Model and Social Cognitive Theory was developed and implemented to reduce HCV associated risk behaviors among IDUs. Methods—A pre- and post- intervention study evaluated the knowledge and behavioral changes in a group of HIV-infected persons recruited from February 2006 through December 2008. Results—A total of 110 participants were recruited; all were IDUs; 82% were men; 86.3% were HIV/HCV co-infected and 24.5% had active injected drugs in the last month (prior to recruitment). The group mean age was 42.2 ± 9.2 years and mean educational level was 10th grade. Knowledge of HCV risk behaviors, perception of HCV susceptibility, and perception of disease severity increased after the intervention. Knowledge of HCV clinical manifestations and HIV co-infection complications and treatment also improved. In addition, HCV risk behaviors and injecting drug practice decrease significantly among IDUs. Conclusions—This new multimedia intervention captured and maintained the participants' attention and interest, in that way facilitating their educational process. Thus, a greater of attention and interest leads to greater knowledge and prevention improvement

    The Creation of a Critical Care Admission Pressure Injury Prevention Cart to Reduce Hospital-Acquired Pressure Injuries

    Get PDF
    The goal of this process improvement initiative is to reduce hospital-acquired pressure injuries related to Covid-19 with Critical Care patients. Critically ill and ventilated patients require prone position therapy and prolonged ventilator times place the patient at risk for hospital acquired conditions and pressure injuries. The Critical Care team created a Critical Care Admission Pressure Injury Prevention Cart that contains preventative dressings for all pressure areas at risk. The Critical Care Admission Pressure Injury Prevention Cart has significantly reduced the pressure injury rate. With the emergence of the pandemic and additional surges, pressure injuries continued to be on the rise due to prone position therapy. The Critical Care team worked with the system and developed prone position protocols, which included preventative dressings for all areas at risk. Prior to the implementation of the admission cart, Critical Care ended fiscal year 2022, quarter one, with fifty-three hospital acquired pressure injuries. Last December and early January 2022 there was another surge of Covid-19. The Critical Care team implemented the admission cart in January 2022. From January 2022 through September 2022, there has been an 98% reduction. The cart has been successful for Critical Care, and Baptist Hospital implemented the cart in all high acuity areas. This cart was a multidisciplinary practice, which consists of nursing, the wound and skin team, respiratory care, and leadership working together towards the goal of patient safety and pressure injury prevention

    Simultaneous infrared and optical observations of the transiting debris cloud around WD 1145+017

    Get PDF
    We present multiwavelength photometric monitoring of WD 1145+017, a white dwarf exhibiting periodic dimming events interpreted to be the transits of orbiting, disintegrating planetesimals. Our observations include the first set of near-infrared light curves for the object, obtained on multiple nights over the span of 1 month, and recorded multiple transit events with depths varying between ∌20 and 50 per cent. Simultaneous near-infrared and optical observations of the deepest and longest duration transit event were obtained on two epochs with the Anglo-Australian Telescope and three optical facilities, over the wavelength range of 0.5–1.2ÎŒm. These observations revealed no measurable difference in transit depths for multiple photometric pass bands, allowing us to place a 2σ lower limit of 0.8ÎŒm on the grain size in the putative transiting debris cloud. This conclusion is consistent with the spectral energy distribution of the system, which can be fit with an optically thin debris disc with minimum particle sizes of 10+5−3ÎŒm

    A Search for the Transit of HD 168443b: Improved Orbital Parameters and Photometry

    Get PDF
    The discovery of transiting planets around bright stars holds the potential to greatly enhance our understanding of planetary atmospheres. In this work we present the search for transits of HD 168443b, a massive planet orbiting the bright star HD 168443 V=6.92 with a period of 58.11 days. The high eccentricity of the planetary orbit e=0.53 significantly enhances the a-priori transit probability beyond that expected for a circular orbit, making HD 168443 a candidate for our ongoing Transit Ephemeris Refinement and Monitoring Survey (TERMS). Using additional radial velocities from Keck-HIRES, we refined the orbital parameters of this multi-planet system and derived a new transit ephemeris for HD 168443b. The reduced uncertainties in the transit window make a photometric transit search practicable. Photometric observations acquired during predicted transit windows were obtained on three nights. CTIO 1.0 m photometry acquired on 2010 September 7 had the required precision to detect a transit but fell just outside of our final transit window. Nightly photometry from the T8 0.8 m Automated Photometric Telescope (APT) at Fairborn Observatory, acquired over a span of 109 nights, demonstrates that HD 168443 is constant on a time scale of weeks. Higher-cadence photometry on 2011 April 28 and June 25 shows no evidence of a transit. We are able to rule out a non-grazing transit of HD 168443b.Comment: Accepted in ApJ. 25 pages. 8 Figure

    Spitzer Reveals Evidence of Molecular Absorption in the Atmosphere of the Hot Neptune LTT 9979b

    Get PDF
    Non-rocky sub-jovian exoplanets in high irradiation environments are rare. LTT 9979b, also known as TESS Object of Interest (TOI) 193.01, is one of the few such planets discovered to date, and the first example of an ultra-hot Neptune. The planet's bulk density indicates that it has a substantial atmosphere, so to investigate its atmospheric composition and shed further light on its origin, we obtained {\it Spitzer} IRAC secondary eclipse observations of LTT 9979b at 3.6 and 4.5 Ό\mum. We combined the {\it Spitzer} observations with a measurement of the secondary eclipse in the {\it TESS} bandpass. The resulting secondary eclipse spectrum strongly prefers a model that includes CO absorption over a blackbody spectrum, incidentally making LTT 9979b the first {\it TESS} exoplanet (and the first ultra-hot Neptune) with evidence of a spectral feature in its atmosphere. We did not find evidence of a thermal inversion, at odds with expectations based on the atmospheres of similarly-irradiated hot Jupiters. We also report a nominal dayside brightness temperature of 2305 ±\pm 141 K (based on the 3.6 Ό\mum secondary eclipse measurement), and we constrained the planet's orbital eccentricity to e<0.01e < 0.01 at the 99.7 \% confidence level. Together with our analysis of LTT 9979b's thermal phase curves reported in a companion paper, our results set the stage for similar investigations of a larger sample of exoplanets discovered in the hot Neptune desert, investigations which are key to uncovering the origin of this population.Comment: 12 pages, 5 figures; accepted to ApJ Letter

    TOI-2196 b : Rare planet in the hot Neptune desert transiting a G-type star

    Get PDF
    Funding: C.M.P., M.F., I.G., and J.K. gratefully acknowledge the support of the Swedish National Space Agency (DNR 65/19, 174/18, 177/19, 2020-00104). L.M.S and D.G. gratefully acknowledge financial support from the CRT foundation under Grant No. 2018.2323 “Gaseous or rocky? Unveiling the nature of small worlds”. P.K. acknowledges support from grant LTT-20015. E.G. acknowledge the support of the ThĂŒringer Ministerium fĂŒr Wirtschaft, Wissenschaft und Digitale Gesellschaft. J.S.J. gratefully acknowledges support by FONDECYT grant 1201371 and from the ANID BASAL projects ACE210002 and FB210003. H.J.D. acknowledges support from the Spanish Research Agency of the Ministry of Science and Innovation (AEI-MICINN) under grant PID2019-107061GBC66, DOI: 10.13039/501100011033. D.D. acknowledges support from the TESS Guest Investigator Program grants 80NSSC21K0108 and 80NSSC22K0185. M.E. acknowledges the support of the DFG priority program SPP 1992 "Exploring the Diversity of Extrasolar Planets" (HA 3279/12-1). K.W.F.L. was supported by Deutsche Forschungsgemeinschaft grants RA714/14-1 within the DFG Schwerpunkt SPP 1992, Exploring the Diversity of Extrasolar Planets. N.N. acknowledges support from JSPS KAKENHI Grant Number JP18H05439, JST CREST Grant Number JPMJCR1761. M.S.I.P. is funded by NSF.The hot Neptune desert is a region hosting a small number of short-period Neptunes in the radius-instellation diagram. Highly irradiated planets are usually either small (R â‰Č 2 R⊕) and rocky or they are gas giants with radii of ≳1 RJ. Here, we report on the intermediate-sized planet TOI-2196 b (TIC 372172128.01) on a 1.2 day orbit around a G-type star (V = 12.0, [Fe/H] = 0.14 dex) discovered by the Transiting Exoplanet Survey Satellite in sector 27. We collected 41 radial velocity measurements with the HARPS spectrograph to confirm the planetary nature of the transit signal and to determine the mass. The radius of TOI-2196 b is 3.51 ± 0.15 R⊕, which, combined with the mass of 26.0 ± 1.3 M⊕, results in a bulk density of 3.31−0.43+0.51 g cm−3. Hence, the radius implies that this planet is a sub-Neptune, although the density is twice than that of Neptune. A significant trend in the HARPS radial velocity measurements points to the presence of a distant companion with a lower limit on the period and mass of 220 days and 0.65 MJ, respectively, assuming zero eccentricity. The short period of planet b implies a high equilibrium temperature of 1860 ± 20 K, for zero albedo and isotropic emission. This places the planet in the hot Neptune desert, joining a group of very few planets in this parameter space discovered in recent years. These planets suggest that the hot Neptune desert may be divided in two parts for planets with equilibrium temperatures of ≳1800 K: a hot sub-Neptune desert devoid of planets with radii of ≈ 1.8−3 R⊕ and a sub-Jovian desert for radii of ≈5−12 R⊕. More planets in this parameter space are needed to further investigate this finding. Planetary interior structure models of TOI-2196 b are consistent with a H/He atmosphere mass fraction between 0.4% and 3%, with a mean value of 0.7% on top of a rocky interior. We estimated the amount of mass this planet might have lost at a young age and we find that while the mass loss could have been significant, the planet had not changed in terms of character: it was born as a small volatile-rich planet and it remains one at present.Publisher PDFPeer reviewe

    TESS discovery of a super-Earth and two sub-Neptunes orbiting the bright, nearby, Sun-like star HD 22946

    Full text link
    We report the Transiting Exoplanet Survey Satellite (TESS) discovery of a three-planet system around the bright Sun-like star HD~22946(V=8.3 mag),also known as TIC~100990000, located 63 parsecs away.The system was observed by TESS in Sectors 3, 4, 30 and 31 and two planet candidates, labelled TESS Objects of Interest (TOIs) 411.01 (planet cc) and 411.02 (planet bb), were identified on orbits of 9.57 and 4.04 days, respectively. In this work, we validate the two planets and recover an additional single transit-like signal in the light curve, which suggests the presence of a third transiting planet with a longer period of about 46 days.We assess the veracity of the TESS transit signals and use follow-up imaging and time series photometry to rule out false positive scenarios, including unresolved binary systems, nearby eclipsing binaries or background/foreground stars contaminating the light curves. Parallax measurements from Gaia EDR3, together with broad-band photometry and spectroscopic follow-up by TFOP allowed us to constrain the stellar parameters of TOI-411, including its radius of1.157±0.025R⊙1.157\pm0.025R_\odot. Adopting this value, we determined the radii for the three exoplanet candidates and found that planet bb is a super-Earth, with a radius of 1.72±0.10R⊕1.72\pm0.10R_\oplus, while planet cc and dd are sub-Neptunian planets, with radii of2.74±0.14R⊕2.74\pm0.14R_\oplus and 3.23±0.19R⊕3.23\pm0.19R_\oplus respectively. By using dynamical simulations, we assessed the stability of the system and evaluated the possibility of the presence of other undetected, non-transiting planets by investigating its dynamical packing. We find that the system is dynamically stable and potentially unpacked, with enough space to host at least one more planet between cc and dd.(Abridged)Comment: 21 pages, 12 figures. Accepted for publication on A&

    TKS X: Confirmation of TOI-1444b and a Comparative Analysis of the Ultra-short-period Planets with Hot Neptunes

    Full text link
    We report the discovery of TOI-1444b, a 1.4-R⊕R_\oplus super-Earth on a 0.47-day orbit around a Sun-like star discovered by {\it TESS}. Precise radial velocities from Keck/HIRES confirmed the planet and constrained the mass to be 3.87±0.71M⊕3.87 \pm 0.71 M_\oplus. The RV dataset also indicates a possible non-transiting, 16-day planet (11.8±2.9M⊕11.8\pm2.9M_\oplus). We report a tentative detection of phase curve variation and secondary eclipse of TOI-1444b in the {\it TESS} bandpass. TOI-1444b joins the growing sample of 17 ultra-short-period planets with well-measured masses and sizes, most of which are compatible with an Earth-like composition. We take this opportunity to examine the expanding sample of ultra-short-period planets (<2R⊕<2R_\oplus) and contrast them with the newly discovered sub-day ultra-hot Neptunes (>3R⊕>3R_\oplus, >2000F⊕>2000F_\oplus TOI-849 b, LTT9779 b and K2-100). We find that 1) USPs have predominately Earth-like compositions with inferred iron core mass fractions of 0.32±\pm0.04; and have masses below the threshold of runaway accretion (∌10M⊕\sim 10M_\oplus), while ultra-hot Neptunes are above the threshold and have H/He or other volatile envelope. 2) USPs are almost always found in multi-planet system consistent with a secular interaction formation scenario; ultra-hot Neptunes (Porbâ‰ČP_{\rm orb} \lesssim1 day) tend to be ``lonely' similar to longer-period hot Neptunes(PorbP_{\rm orb}1-10 days) and hot Jupiters. 3) USPs occur around solar-metallicity stars while hot Neptunes prefer higher metallicity hosts. 4) In all these respects, the ultra-hot Neptunes show more resemblance to hot Jupiters than the smaller USP planets, although ultra-hot Neptunes are rarer than both USP and hot Jupiters by 1-2 orders of magnitude.Comment: Accepted too AJ. 12 Figures, 4 table
    • 

    corecore