938 research outputs found

    PHANGS CO kinematics: disk orientations and rotation curves at 150 pc resolution

    Full text link
    We present kinematic orientations and high resolution (150 pc) rotation curves for 67 main sequence star-forming galaxies surveyed in CO (2-1) emission by PHANGS-ALMA. Our measurements are based on the application of a new fitting method tailored to CO velocity fields. Our approach identifies an optimal global orientation as a way to reduce the impact of non-axisymmetric (bar and spiral) features and the uneven spatial sampling characteristic of CO emission in the inner regions of nearby galaxies. The method performs especially well when applied to the large number of independent lines-of-sight contained in the PHANGS CO velocity fields mapped at 1'' resolution. The high resolution rotation curves fitted to these data are sensitive probes of mass distribution in the inner regions of these galaxies. We use the inner slope as well as the amplitude of our fitted rotation curves to demonstrate that CO is a reliable global dynamical mass tracer. From the consistency between photometric orientations from the literature and kinematic orientations determined with our method, we infer that the shapes of stellar disks in the mass range of log(M⋆(M⊙)\rm M_{\star}(M_{\odot}))=9.0-10.9 probed by our sample are very close to circular and have uniform thickness.Comment: 19 figures, 36 pages, accepted for publication in ApJ. Table of PHANGS rotation curves available from http://phangs.org/dat

    Resolving Giant Molecular Clouds in NGC 300: : A First Look with the Submillimeter Array

    Get PDF
    Christopher M. Faesi, et al, 'RESOLVING GIANT MOLECULAR CLOUDS IN NGC 300: A FIRST LOOK WITH THE SUBMILLIMETER ARRAY', The Astrophysical Journal, Vol. 821(2) (16 pp), April 2016. doi:10.3847/0004-637X/821/2/125. © 2016. The American Astronomical Society. All rights reserved.We present the first high angular resolution study of giant molecular clouds (GMCs) in the nearby spiral galaxy NGC 300, based on observations from the Submillimeter Array (SMA). We target eleven 500 pc-sized regions of active star formation within the galaxy in the CO(J=2-1) line at 40 pc spatial and 1 km/s spectral resolution and identify 45 individual GMCs. We characterize the physical properties of these GMCs, and find that they are similar to GMCs in the disks of the Milky Way and other nearby spiral galaxies. For example, the GMC mass spectrum in our sample has a slope of 1.80+/-0.07. Twelve clouds are spatially resolved by our observations, of which ten have virial mass estimates that agree to within a factor of two with mass estimates derived directly from CO integrated intensity, suggesting that the majority of these GMCs are bound. The resolved clouds show consistency with Larson's fundamental relations between size, linewidth, and mass observed in the Milky Way. We find that the linewidth scales with the size as DeltaV ~ R^(0.52+/-0.20), and the median surface density in the subsample is 54 Msun/pc^(-2). We detect 13CO in four GMCs and find a mean 12CO/13CO flux ratio of 6.2. Our interferometric observations recover between 30% and 100% of the integrated intensity from the APEX single dish CO observations of Faesi et al. 2014, suggesting the presence of low-mass GMCs and/or diffuse gas below our sensitivity limit. The fraction of APEX emission recovered increases with the SMA total intensity as well as with the star formation rate.Peer reviewe

    Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy.

    Get PDF
    Gain-of-function (GOF) variants in K+ channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K+ currents lead to network hyperexcitability. Here, we introduce a human Na+-activated K+ (KNa) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human patients. Although the variant increases KNa currents in cortical excitatory and inhibitory neurons, there is an increase in the KNa current across subthreshold voltages only in inhibitory neurons, particularly in those with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action potential (AP) generation. We further observe evidence of synaptic rewiring, including increases in homotypic synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention

    Use of 16S ribosomal RNA gene analyses to characterize the bacterial signature associated with poor oral health in West Virginia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>West Virginia has the worst oral health in the United States, but the reasons for this are unclear. This pilot study explored the etiology of this disparity using culture-independent analyses to identify bacterial species associated with oral disease.</p> <p>Methods</p> <p>Bacteria in subgingival plaque samples from twelve participants in two independent West Virginia dental-related studies were characterized using 16S rRNA gene sequencing and Human Oral Microbe Identification Microarray (HOMIM) analysis. Unifrac analysis was used to characterize phylogenetic differences between bacterial communities obtained from plaque of participants with low or high oral disease, which was further evaluated using clustering and Principal Coordinate Analysis.</p> <p>Results</p> <p>Statistically different bacterial signatures (<it>P </it>< 0.001) were identified in subgingival plaque of individuals with low or high oral disease in West Virginia based on 16S rRNA gene sequencing. Low disease contained a high frequency of <it>Veillonella </it>and <it>Streptococcus</it>, with a moderate number of <it>Capnocytophaga</it>. High disease exhibited substantially increased bacterial diversity and included a large proportion of Clostridiales cluster bacteria (<it>Selenomonas</it>, <it>Eubacterium, Dialister</it>). Phylogenetic trees constructed using 16S rRNA gene sequencing revealed that Clostridiales were repeated colonizers in plaque associated with high oral disease, providing evidence that the oral environment is somehow influencing the bacterial signature linked to disease.</p> <p>Conclusions</p> <p>Culture-independent analyses identified an atypical bacterial signature associated with high oral disease in West Virginians and provided evidence that the oral environment influenced this signature. Both findings provide insight into the etiology of the oral disparity in West Virginia.</p

    Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stair climbing up and down is an essential part of everyday's mobility. To enable wheelchair-dependent patients the repetitive practice of this task, a novel gait robot, G-EO-Systems (EO, Lat: I walk), based on the end-effector principle, has been designed. The trajectories of the foot plates are freely programmable enabling not only the practice of simulated floor walking but also stair climbing up and down. The article intended to compare lower limb muscle activation patterns of hemiparetic subjects during real floor walking and stairs climbing up, and during the corresponding simulated conditions on the machine, and secondly to demonstrate gait improvement on single case after training on the machine.</p> <p>Methods</p> <p>The muscle activation pattern of seven lower limb muscles of six hemiparetic patients during free and simulated walking on the floor and stair climbing was measured via dynamic electromyography. A non-ambulatory, sub-acute stroke patient additionally trained on the G-EO-Systems every workday for five weeks.</p> <p>Results</p> <p>The muscle activation patterns were comparable during the real and simulated conditions, both on the floor and during stair climbing up. Minor differences, concerning the real and simulated floor walking conditions, were a delayed (prolonged) onset (duration) of the thigh muscle activation on the machine across all subjects. Concerning stair climbing conditions, the shank muscle activation was more phasic and timely correct in selected patients on the device. The severely affected subject regained walking and stair climbing ability.</p> <p>Conclusions</p> <p>The G-EO-Systems is an interesting new option in gait rehabilitation after stroke. The lower limb muscle activation patterns were comparable, a training thus feasible, and the positive case report warrants further clinical studies.</p

    The ALMA view of GMCs in NGC 300 : Physical Properties and Scaling Relations at 10 pc Resolution

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for published in The Astrophysical Journal. The Version of Record is available online at https://doi.org/10.3847/1538-4357/aaad60We have conducted a 12CO(2-1) survey of several molecular gas complexes in the vicinity of H ii regions within the spiral galaxy NGC 300 using the Atacama Large Millimeter Array (ALMA). Our observations attain a resolution of 10 pc and 1 , sufficient to fully resolve giant molecular clouds (GMCs) and the highest obtained to date beyond the Local Group. We use the CPROPS algorithm to identify and characterize 250 GMCs across the observed regions. GMCs in NGC 300 appear qualitatively and quantitatively similar to those in the Milky Way disk: they show an identical scaling relationship between size R and linewidth ΔV (ΔV ∝ R 0.48±0.05), appear to be mostly in virial equilibrium, and are consistent with having a constant surface density of about 60 pc -2. The GMC mass spectrum is similar to those in the inner disks of spiral galaxies (including the Milky Way). Our results suggest that global galactic properties such as total stellar mass, morphology, and average metallicity may not play a major role in setting GMC properties, at least within the disks of galaxies on the star-forming main sequence. Instead, GMC properties may be more strongly influenced by local environmental factors such as the midplane disk pressure. In particular, in the inner disk of NGC 300, we find this pressure to be similar to that in the local Milky Way but markedly lower than that in the disk of M51, where GMCs are characterized by systematically higher surface densities and a higher coefficient for the size-linewidth relation.Peer reviewedFinal Accepted Versio

    Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lignification of the fruit endocarp layer occurs in many angiosperms and plays a critical role in seed protection and dispersal. This process has been extensively studied with relationship to pod shatter or dehiscence in <it>Arabidopsis</it>. Dehiscence is controlled by a set of transcription factors that define the fruit tissue layers and whether or not they lignify. In contrast, relatively little is known about similar processes in other plants such as stone fruits which contain an extremely hard lignified endocarp or stone surrounding a single seed.</p> <p>Results</p> <p>Here we show that lignin deposition in peach initiates near the blossom end within the endocarp layer and proceeds in a distinct spatial-temporal pattern. Microarray studies using a developmental series from young fruits identified a sharp and transient induction of phenylpropanoid, lignin and flavonoid pathway genes concurrent with lignification and subsequent stone hardening. Quantitative polymerase chain reaction studies revealed that specific phenylpropanoid (phenylalanine ammonia-lyase and cinnamate 4-hydroxylase) and lignin (caffeoyl-CoA O-methyltransferase, peroxidase and laccase) pathway genes were induced in the endocarp layer over a 10 day time period, while two lignin genes (<it>p-</it>coumarate 3-hydroxylase and cinnamoyl CoA reductase) were co-regulated with flavonoid pathway genes (chalcone synthase, dihydroflavanol 4-reductase, leucoanthocyanidin dioxygen-ase and flavanone-3-hydrosylase) which were mesocarp and exocarp specific. Analysis of other fruit development expression studies revealed that flavonoid pathway induction is conserved in the related Rosaceae species apple while lignin pathway induction is not. The transcription factor expression of peach genes homologous to known endocarp determinant genes in <it>Arabidopsis </it>including <it>SHATTERPROOF</it>, <it>SEEDSTCK </it>and <it>NAC SECONDARY WALL THICENING PROMOTING FACTOR 1 </it>were found to be specifically expressed in the endocarp while the negative regulator <it>FRUITFU</it>L predominated in exocarp and mesocarp.</p> <p>Conclusions</p> <p>Collectively, the data suggests, first, that the process of endocarp determination and differentiation in peach and <it>Arabidopsis </it>share common regulators and, secondly, reveals a previously unknown coordination of competing lignin and flavonoid biosynthetic pathways during early fruit development.</p

    Clinical Outcomes With a Repositionable Self-Expanding Transcatheter Aortic Valve Prosthesis: The International FORWARD Study

    Get PDF
    Background Clinical outcomes in large patient populations from real-world clinical practice with a next-generation self-expanding transcatheter aortic valve are lacking. Objectives This study sought to document the clinical and device performance outcomes of transcatheter aortic valve replacement (TAVR) with a next-generation, self-expanding transcatheter heart valve (THV) system in patients with severe symptomatic aortic stenosis (AS) in routine clinical practice. Methods The FORWARD (CoreValve Evolut R FORWARD) study is a prospective, single-arm, multinational, multicenter, observational study. An independent clinical events committee adjudicated safety endpoints based on Valve Academic Research Consortium-2 definitions. An independent echocardiographic core laboratory evaluated all echocardiograms. From January 2016 to December 2016, TAVR with the next-generation self-expanding THV was attempted in 1,038 patients with symptomatic, severe AS at 53 centers on 4 continents. Results Mean age was 81.8 ± 6.2 years, 64.9% were women, the mean Society of Thoracic Surgeons Predicted Risk of Mortality was 5.5 ± 4.5%, and 33.9% of patients were deemed frail. The repositioning feature of the THV was applied in 25.8% of patients. A single valve was implanted in the proper anatomic location in 98.9% of patients. The mean aortic valve gradient was 8.5 ± 5.6 mm Hg, and moderate or severe aortic regurgitation was 1.9% at discharge. All-cause mortality was 1.9%, and disabling stroke occurred in 1.8% at 30 days. The expected-to-observed early surgical mortality ratio was 0.35. A pacemaker was implanted in 17.5% of patients. Conclusions TAVR using the next-generation THV is clinically safe and effective for treating older patients with severe AS at increased operative risk. (CoreValve Evolut R FORWARD Study [FORWARD]; NCT02592369

    Planck 2013 results. VI. High Frequency Instrument data processing

    Get PDF
    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.́7 to 4.́6. The detector noise per (effective) beam solid angle is respectively, 10, 6 , 12, and 39 ΌK in the four lowest HFI frequency channels (100−353GHz) and 13 and 14 kJy sr-1 in the 545 and 857 GHz channels. Relative to the 143 GHz channel, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 <ℓ < 2500), are calibrated relative to 143 GHz to better than 0.2%
    • 

    corecore