1,723 research outputs found

    Beyond peer observation of teaching

    Get PDF
    OBJECTIVE To summarize the evidence on effectiveness of translational diabetes prevention programs, based on promoting lifestyle change to prevent type 2 diabetes in real-world settings and to examine whether adherence to international guideline recommendations is associated with effectiveness. RESEARCH DESIGN AND METHODS Bibliographic databases were searched up to July 2012. Included studies had a follow-up of ≥12 months and outcomes comparing change in body composition, glycemic control, or progression to diabetes. Lifestyle interventions aimed to translate evidence from previous efficacy trials of diabetes prevention into real-world intervention programs. Data were combined using random-effects meta-analysis and meta-regression considering the relationship between intervention effectiveness and adherence to guidelines. RESULTS Twenty-five studies met the inclusion criteria. The primary meta-analysis included 22 studies (24 study groups) with outcome data for weight loss at 12 months. The pooled result of the direct pairwise meta-analysis shows that lifestyle interventions resulted in a mean weight loss of 2.12 kg (95% CI -2.61 to -1.63; I(2) = 91.4%). Adherence to guidelines was significantly associated with a greater weight loss (an increase of 0.3 kg per point increase on a 12-point guideline-adherence scale). CONCLUSIONS Evidence suggests that pragmatic diabetes prevention programs are effective. Effectiveness varies substantially between programs but can be improved by maximizing guideline adherence. However, more research is needed to establish optimal strategies for maximizing both cost-effectiveness and longer-term maintenance of weight loss and diabetes prevention effects

    Vascular effects of serelaxin in patients with stable coronary artery disease:A randomized placebo-controlled trial

    Get PDF
    Aims: The effects of serelaxin, a recombinant form of human relaxin-2 peptide, on vascular function in the coronary microvascular and systemic macrovascular circulation remain largely unknown. This mechanistic, clinical study assessed the effects of serelaxin on myocardial perfusion, aortic stiffness, and safety in patients with stable coronary artery disease (CAD). Methods and results: In this multicentre, double-blind, parallel-group, placebo-controlled study, 58 patients were randomized 1:1 to 48 h intravenous infusion of serelaxin (30 µg/kg/day) or matching placebo. The primary endpoints were change from baseline to 47 h post-initiation of the infusion in global myocardial perfusion reserve (MPR) assessed using adenosine stress perfusion cardiac magnetic resonance imaging, and applanation tonometry-derived augmentation index (AIx). Secondary endpoints were: change from baseline in AIx and pulse wave velocity, assessed at 47 h, Day 30, and Day 180; aortic distensibility at 47 h; pharmacokinetics and safety. Exploratory endpoints were the effect on cardiorenal biomarkers [N-terminal pro-brain natriuretic peptide (NT-proBNP), high-sensitivity troponin T (hsTnT), endothelin-1, and cystatin C]. Of 58 patients, 51 were included in the primary analysis (serelaxin, n = 25; placebo, n = 26). After 2 and 6 h of serelaxin infusion, mean placebo-corrected blood pressure reductions of −9.6 mmHg (P = 0.01) and −13.5 mmHg (P = 0.0003) for systolic blood pressure and −5.2 mmHg (P = 0.02) and −8.4 mmHg (P = 0.001) for diastolic blood pressure occurred. There were no between-group differences from baseline to 47 h in global MPR (−0.24 vs. −0.13, P = 0.44) or AIx (3.49% vs. 0.04%, P = 0.21) with serelaxin compared with placebo. Endothelin-1 and cystatin C levels decreased from baseline in the serelaxin group, and there were no clinically relevant changes observed with serelaxin for NT-proBNP or hsTnT. Similar numbers of serious adverse events were observed in both groups (serelaxin, n = 5; placebo, n = 7) to 180-day follow-up. Conclusion: In patients with stable CAD, 48 h intravenous serelaxin reduced blood pressure but did not alter myocardial perfusion

    Pervasive lesion segregation shapes cancer genome evolution

    Get PDF
    Cancers arise through the acquisition of oncogenic mutations and grow through clonal expansion. Here we reveal that most mutagenic DNA lesions are not resolved as mutations within a single cell-cycle. Instead, DNA lesions segregate unrepaired into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We characterise this process in mutagen-induced mouse liver tumours and show that DNA replication across persisting lesions can produce multiple alternative alleles in successive cell divisions, thereby generating both multi-allelic and combinatorial genetic diversity. The phasing of lesions enables the accurate measurement of strand biased repair processes, quantification of oncogenic selection, and fine mapping of sister chromatid exchange events. Finally, we demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV light and chemotherapy agents in human cells and tumours, which has profound implications for the evolution and adaptation of cancer genomes.This work was supported by: Cancer Research UK (20412, 22398), the European Research Council (615584, 682398), the Wellcome Trust (WT108749/Z/15/Z, WT106563/Z/14/A, WT202878/B/16/Z), the European Molecular Biology Laboratory, the MRC Human Genetics Unit core funding programme grants (MC_UU_00007/11, MC_UU_00007/16), and the ERDF/Spanish Ministry of Science, Innovation and Universities-Spanish State Research Agency/DamReMap Project (RTI2018-094095-B-I00)

    Rapid characterisation of vegetation structure to predict refugia and climate change impacts across a global biodiversity hotspot

    Get PDF
    Identification of refugia is an increasingly important adaptation strategy in conservation planning under rapid anthropogenic climate change. Granite outcrops (GOs) provide extraordinary diversity, including a wide range of taxa, vegetation types and habitats in the Southwest Australian Floristic Region (SWAFR). However, poor characterization of GOs limits the capacity of conservation planning for refugia under climate change. A novel means for the rapid identification of potential refugia is presented, based on the assessment of local-scale environment and vegetation structure in a wider region. This approach was tested on GOs across the SWAFR. Airborne discrete return Light Detection And Ranging (LiDAR) data and Red Green and Blue (RGB) imagery were acquired. Vertical vegetation profiles were used to derive 54 structural classes. Structural vegetation types were described in three areas for supervised classification of a further 13 GOs across the region.Habitat descriptions based on 494 vegetation plots on and around these GOs were used to quantify relationships between environmental variables, ground cover and canopy height. The vegetation surrounding GOs is strongly related to structural vegetation types (Kappa = 0.8) and to its spatial context. Water gaining sites around GOs are characterized by taller and denser vegetation in all areas. The strong relationship between rainfall, soil-depth, and vegetation structure (R2 of 0.8–0.9) allowed comparisons of vegetation structure between current and future climate. Significant shifts in vegetation structural types were predicted and mapped for future climates. Water gaining areas below granite outcrops were identified as important putative refugia. A reduction in rainfall may be offset by the occurrence of deeper soil elsewhere on the outcrop. However, climate change interactions with fire and water table declines may render our conclusions conservative. The LiDAR-based mapping approach presented enables the integration of site-based biotic assessment with structural vegetation types for the rapid delineation and prioritization of key refugia

    Snacktivity™ to promote physical activity and reduce future risk of disease in the population: protocol for a feasibility randomised controlled trial and nested qualitative study

    Get PDF
    Background: Many people do not regularly participate in physical activity, which may negatively impact their health. Current physical activity guidelines are focused on promoting weekly accumulation of at least 150 min of moderate to vigorous intensity physical activity (MVPA). Whilst revised guidance now recognises the importance of making small changes to physical activity behaviour, guidance still focuses on adults needing to achieve at least 150 min of MVPA per week. An alternative ‘whole day’ approach that could motivate the public to be more physically active, is a concept called Snacktivity™. Instead of focusing on achieving 150 min per week of physical activity, for example 30 min of MVPA over 5 days, Snacktivity™ encourages the public to achieve this through small, but frequent, 2–5 min ‘snacks’ of MVPA throughout the whole day. Methods: The primary aim is to undertake a feasibility trial with nested qualitative interviews to assess the feasibility and acceptability of the Snacktivity™ intervention to inform the design of a subsequent phase III randomised trial. A two-arm randomised controlled feasibility trial aiming to recruit 80 inactive adults will be conducted. Recruitment will be from health and community settings and social media. Participants will be individually randomised (1:1 ratio) to receive either the Snacktivity™ intervention or usual care. The intervention will last 12 weeks with assessment of outcomes completed before and after the intervention in all participants. We are interested in whether the Snacktivity™ trial is appealing to participants (assessed by the recruitment rate) and if the Snacktivity™ intervention and trial methods are acceptable to participants (assessed by Snacktivity™/physical activity adherence and retention rates). The intervention will be delivered by health care providers within health care consultations or by researchers. Participants’ experiences of the trial and intervention, and health care providers’ views of delivering the intervention within health consultations will be explored. Discussion: The development of physical activity interventions that can be delivered at scale are needed. The findings from this study will inform the viability and design of a phase III trial to assess the effectiveness and cost-effectiveness of Snacktivity™ to increase physical activity. Trial registration: ISRCTN: 64851242

    Identification of rare sequence variation underlying heritable pulmonary arterial hypertension.

    Get PDF
    Pulmonary arterial hypertension (PAH) is a rare disorder with a poor prognosis. Deleterious variation within components of the transforming growth factor-β pathway, particularly the bone morphogenetic protein type 2 receptor (BMPR2), underlies most heritable forms of PAH. To identify the missing heritability we perform whole-genome sequencing in 1038 PAH index cases and 6385 PAH-negative control subjects. Case-control analyses reveal significant overrepresentation of rare variants in ATP13A3, AQP1 and SOX17, and provide independent validation of a critical role for GDF2 in PAH. We demonstrate familial segregation of mutations in SOX17 and AQP1 with PAH. Mutations in GDF2, encoding a BMPR2 ligand, lead to reduced secretion from transfected cells. In addition, we identify pathogenic mutations in the majority of previously reported PAH genes, and provide evidence for further putative genes. Taken together these findings contribute new insights into the molecular basis of PAH and indicate unexplored pathways for therapeutic intervention

    DNAAF1 links heart laterality with the AAA+ ATPase RUVBL1 and ciliary intraflagellar transport

    Get PDF
    DNAAF1 (LRRC50) is a cytoplasmic protein required for dynein heavy chain assembly and cilia motility, and DNAAF1 mutations cause primary ciliary dyskinesia (PCD; MIM 613193). We describe four families with DNAAF1 mutations and complex congenital heart disease (CHD). In three families, all affected individuals have typical PCD phenotypes. However, an additional family demonstrates isolated CHD (heterotaxy) in two affected siblings, but no clinical evidence of PCD. We identified a homozygous DNAAF1 missense mutation, p.Leu191Phe, as causative for heterotaxy in this family. Genetic complementation in dnaaf1-null zebrafish embryos demonstrated the rescue of normal heart looping with wild-type human DNAAF1, but not the p.Leu191Phe variant, supporting the conserved pathogenicity of this DNAAF1 missense mutation. This observation points to a phenotypic continuum between CHD and PCD, providing new insights into the pathogenesis of isolated CHD. In further investigations of the function of DNAAF1 in dynein arm assembly, we identified interactions with members of a putative dynein arm assembly complex. These include the ciliary intraflagellar transport protein IFT88 and the AAA+ (ATPases Associated with various cellular Activities) family proteins RUVBL1 (Pontin) and RUVBL2 (Reptin). Co-localization studies support these findings, with the loss of RUVBL1 perturbing the co-localization of DNAAF1 with IFT88. We show that RUVBL1 orthologues have an asymmetric left-sided distribution at both the mouse embryonic node and the Kupffer’s vesicle in zebrafish embryos, with the latter asymmetry dependent on DNAAF1. These results suggest that DNAAF1-RUVBL1 biochemical and genetic interactions have a novel functional role in symmetry breaking and cardiac development
    corecore