96 research outputs found

    Crafting Critical Heritage Discourses into Interactive Exhibition Design

    Get PDF
    This paper argues how a more reflective design practice that embraces critical discourses can transform interactive exhibition design and therefore the museum visiting experience. Four framing arguments underpin our exhibition design making: the value of materiality, visiting as an aesthetic experience, challenging the authorized voice, and heritage as a process. These arguments were embodied through design, art and craft practice into one interactive exhibition at a house museum. We draw from our design process discussing the implications that adopting an approach informed by critical heritage debates has on exhibition design and suggest three sensitizing concepts (polyvocal narratives, dialogical interaction, interweaving time and space) bridging the practice of interactive exhibition design and critical heritage theory

    Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke

    Get PDF
    Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P = 1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes

    Endocrine and multiple sclerosis outcomes in patients with autoimmune thyroid events in the alemtuzumab CARE-MS studies

    Get PDF
    Background Alemtuzumab is an effective therapy for relapsing multiple sclerosis. Autoimmune thyroid events are a common adverse event. Objective Describe endocrine and multiple sclerosis outcomes over 6 years for alemtuzumab-treated relapsing multiple sclerosis patients in the phase 3 CARE-MS I, II, and extension studies who experienced adverse thyroid events. Methods Endocrine and multiple sclerosis outcomes were evaluated over 6 years. Thyroid event cases, excluding those pre-existing or occurring after Year 6, were adjudicated retrospectively by expert endocrinologists independently of the sponsor and investigators. Results Thyroid events were reported for 378/811 (46.6%) alemtuzumab-treated patients. Following adjudication, endocrinologists reached consensus on 286 cases (75.7%). Of these, 39.5% were adjudicated to Graves’ disease, 2.5% Hashimoto's disease switching to hyperthyroidism, 15.4% Hashimoto's disease, 4.9% Graves’ disease switching to hypothyroidism, 10.1% transient thyroiditis, and 27.6% with uncertain diagnosis; inclusion of anti-thyroid antibody status reduced the number of uncertain diagnoses. Multiple sclerosis outcomes of those with and without thyroid events were similar. Conclusion Adjudicated thyroid events occurring over 6 years for alemtuzumab-treated relapsing multiple sclerosis patients were primarily autoimmune. Thyroid events were considered manageable and did not affect disease course. Thyroid autoimmunity is a common but manageable adverse event in alemtuzumab-treated relapsing multiple sclerosis patients

    MAGIC gamma-ray and multi-frequency observations of flat spectrum radio quasar PKS 1510-089 in early 2012

    Get PDF
    Aims. Amongst more than fifty blazars detected in very high energy (VHE, E> 100 GeV) Îł rays, only three belong to the subclass of flat spectrum radio quasars (FSRQs). The detection of FSRQs in the VHE range is challenging, mainly because of their soft spectra in the GeV-TeV regime. MAGIC observed PKS 1510−089 (z = 0.36) starting 2012 February 3 until April 3 during a high activity state in the high energy (HE, E> 100 MeV) Îł-ray band observed by AGILE and Fermi. MAGIC observations result in the detection of a source with significance of 6.0 standard deviations (σ). We study the multi-frequency behaviour of the source at the epoch of MAGIC observation, collecting quasi-simultaneous data at radio and optical (GASP-WEBT and F-Gamma collaborations, REM, Steward, Perkins, Liverpool, OVRO, and VLBA telescopes), X-ray (Swift satellite), and HE Îł-ray frequencies. Methods. We study the VHE Îł-ray emission, together with the multi-frequency light curves, 43 GHz radio maps, and spectral energy distribution (SED) of the source. The quasi-simultaneous multi-frequency SED from the millimetre radio band to VHE Îł rays is modelled with a one-zone inverse Compton model. We study two different origins of the seed photons for the inverse Compton scattering, namely the infrared torus and a slow sheath surrounding the jet around the Very Long Baseline Array (VLBA) core. Results. We find that the VHE Îł-ray emission detected from PKS 1510−089 in 2012 February-April agrees with the previous VHE observations of the source from 2009 March-April. We find no statistically significant variability during the MAGIC observations on daily, weekly, or monthly time scales, while the other two known VHE FSRQs (3C 279 and PKS 1222+216) have shown daily scale to sub-hour variability. The Îł-ray SED combining AGILE, Fermi and MAGIC data joins smoothly and shows no hint of a break. The multi-frequency light curves suggest a common origin for the millimetre radio and HE Îł-ray emission, and the HE Îł-ray flaring starts when the new component is ejected from the 43 GHz VLBA core and the studied SED models fit the data well. However, the fast HE Îł-ray variability requires that within the modelled large emitting region, more compact regions must exist. We suggest that these observed signatures would be most naturally explained by a turbulent plasma flowing at a relativistic speed down the jet and crossing a standing conical shock

    Multiwavelength observations of a VHE gamma-ray flare from PKS 1510-089 in 2015

    Get PDF
    Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the VHE (very-high-energy, > 100 GeV) gamma-ray band. Aims. We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ray state. Methods. We performed VHE gamma-ray observations of PKS 1510-089 with the MAGIC telescopes during a high gamma-ray state in May 2015. In order to perform broad-band modelling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results. PKS 1510-089 has been detected in a high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. The spectral shape in the VHE band during the flare is similar to the ones obtained during previous measurements of the source. The observed flux variability sets for the first time constraints on the size of the region from which VHE gamma rays are emitted. The broadband SED can be explained in the External Compton scenario

    Insights into the emission of the blazar 1ES 1011+496 through unprecedented broadband observations during 2011 and 2012

    Get PDF
    Context. 1ES 1011+496 (z = 0.212) was discovered in very high-energy (VHE, E> 100 GeV) Îł rays with MAGIC in 2007. The absence of simultaneous data at lower energies led to an incomplete characterization of the broadband spectral energy distribution (SED). Aims. We study the source properties and the emission mechanisms, probing whether a simple one-zone synchrotron self-Compton (SSC) scenario is able to explain the observed broadband spectrum. Methods. We analyzed data in the range from VHE to radio data from 2011 and 2012 collected by MAGIC, Fermi-LAT, Swift, KVA, OVRO, and MetsĂ€hovi in addition to optical polarimetry data and radio maps from the Liverpool Telescope and MOJAVE. Results. The VHE spectrum was fit with a simple power law with a photon index of 3.69 ± 0.22 and a flux above 150 GeV of (1.46 ± 0.16) × 10-11 ph cm-2 s-1. The source 1ES 1011+496 was found to be in a generally quiescent state at all observed wavelengths, showing only moderate variability from radio to X-rays. A low degree of polarization of less than 10% was measured in optical, while some bright features polarized up to 60% were observed in the radio jet. A similar trend in the rotation of the electric vector position angle was found in optical and radio. The radio maps indicated a superluminal motion of 1.8 ± 0.4 c, which is the highest speed statistically significant measured so far in a high-frequency-peaked BL Lac. Conclusions. For the first time, the high-energy bump in the broadband SED of 1ES 1011+496 could be fully characterized from 0.1 GeV to 1 TeV, which permitted a more reliable interpretation within the one-zone SSC scenario. The polarimetry data suggest that at least part of the optical emission has its origin in some of the bright radio features, while the low polarization in optical might be due to the contribution of parts of the radio jet with different orientations of the magnetic field with respect to the optical emission

    Perspectivas da investigação sobre determinantes sociais em cùncer

    Full text link
    • 

    corecore