252 research outputs found

    How environmental managers perceive and approach the issue of invasive species: the case of Japanese knotweed s.l. (Rhône River, France)

    Get PDF
    We would like to thank Springer for publishing our article. The final publication is available at http://link.springer.com/article/10.1007%2Fs10530-015-0969-1International audienceStudying the perceptions of stakeholders or interested parties is a good way to better understand behaviours and decisions. This is especially true for the management of invasive species such as Japanese knotweed s.l. This plant has spread widely in the Rhône basin, where significant financial resources have been devoted to its management. However, no control technique is recognized as being particularly effective. Many uncertainties remain and many documents have been produced by environmental managers to disseminate current knowledge about the plant and its management. This article aims at characterizing the perceptions that environmental managers have of Japanese knotweed s.l. A discourse analysis was conducted on the printed documentation produced about Japanese knotweed s.l. by environmental managers working along the Rhône River (France). The corpus was both qualitatively and quantitatively analysed. The results indicated a diversity of perceptions depending on the type of environmental managers involved, as well as the geographicalareas and scales on which they acted. Whereas some focused on general knowledge relating to the origins and strategies of colonization, others emphasized the diversity and efficacy of the prospective eradication techniques. There is a real interest in implementing targeted actions to meet local issues. To do so, however, these issues must be better defined. This is a challenging task, as it must involve all types of stakeholders

    Temporal and spatial variations in the parasitoid complex of the horse chestnut leafminer during its invasion of Europe

    Get PDF
    The enemy release hypothesis posits that the initial success of invasive species depends on the scarcity and poor adaptation of native natural enemies such as predators and parasitoids. As for parasitoids, invading hosts are first attacked at low rates by a species-poor complex of mainly generalist species. Over the years, however, parasitoid richness may increase either because the invading host continuously encounters new parasitoid species during its spread (geographic spread-hypothesis) or because local parasitoids need different periods of time to adapt to the novel host (adjustment-hypothesis). Both scenarios should result in a continuous increase of parasitoid richness over time. In this study, we reconstructed the development of the hymenopteran parasitoid complex of the invasive leafminer Cameraria ohridella (Lepidoptera, Gracillariidae). Our results show that the overall parasitism rate increases as a function of host residence time as well as geographic and climatic factors, altogether reflecting the historic spread of C. ohridella. The same variables also explain the individual parasitism rates of several species in the parasitoid complex, but fail to explain the abundance of others. Evidence supporting the “geographic spread-hypothesis” was found in the parasitism pattern of Cirrospilus talitzkii (Hymenoptera, Eulophidae), while that of Pediobius saulius, another eulophid, indicated an increase of parasitism rates by behavioral, phenological or biological adjustments. Compared to fully integrated host-parasitoid associations, however, parasitism rates of C. ohridella are still very low. In addition, the parasitoid complex lacks specialists, provided that the species determined are valid and not complexes of cryptic (and presumably more specialized) species. Probably, the adjustment of specialist parasitoids requires more than a few decades, particularly to invaders which establish in ecological niches free of native hosts, thus eliminating any possibility of recruitment of pre-adapted parasitoids

    Predicting global invasion risks: a management tool to prevent future introductions

    Get PDF
    Predicting regions at risk from introductions of non-native species and the subsequent invasions is a fundamental aspect of horizon scanning activities that enable the development of more effective preventative actions and planning of management measures. The Asian cyprinid fish topmouth gudgeon Pseudorasbora parva has proved highly invasive across Europe since its introduction in the 1960s. In addition to direct negative impacts on native fish populations, P. parva has potential for further damage through transmission of an emergent infectious disease, known to cause mortality in other species. To quantify its invasion risk, in regions where it has yet to be introduced, we trained 900 ecological niche models and constructed an Ensemble Model predicting suitability, then integrated a proxy for introduction likelihood. This revealed high potential for P. parva to invade regions well beyond its current invasive range. These included areas in all modelled continents, with several hotspots of climatic suitability and risk of introduction. We believe that these methods are easily adapted for a variety of other invasive species and that such risk maps could be used by policy-makers and managers in hotspots to formulate increased surveillance and early-warning systems that aim to prevent introductions and subsequent invasions

    Conceptual Frameworks and Methods for Advancing Invasion Ecology

    Get PDF
    Invasion ecology has much advanced since its early beginnings. Nevertheless, explanation, prediction, and management of biological invasions remain difficult. We argue that progress in invasion research can be accelerated by, first, pointing out difficulties this field is currently facing and, second, looking for measures to overcome them. We see basic and applied research in invasion ecology confronted with difficulties arising from (A) societal issues, e.g., disparate perceptions of invasive species; (B) the peculiarity of the invasion process, e.g., its complexity and context dependency; and (C) the scientific methodology, e.g., imprecise hypotheses. To overcome these difficulties, we propose three key measures: (1) a checklist for definitions to encourage explicit definitions; (2) implementation of a hierarchy of hypotheses (HoH), where general hypotheses branch into specific and precisely testable hypotheses; and (3) platforms for improved communication. These measures may significantly increase conceptual clarity and enhance communication, thus advancing invasion ecology

    Temporal Dynamics and Evolution of SARS-CoV-2 Demonstrate the Necessity of Ongoing Viral Genome Sequencing in Ontario, Canada

    Get PDF
    Genome-wide variation in SARS-CoV-2 reveals evolution and transmission dynamics which are critical considerations for disease control and prevention decisions. Here, we review estimates of the genome-wide viral mutation rates, summarize current COVID-19 case load in the province of Ontario, Canada (5 January 2021), and analyze published SARS-CoV-2 genomes from Ontario (collected prior to 24 November 2020) to test for more infectious genetic variants or lineages.</jats:p

    No Evolutionary Shift in the Mating System of North American Ambrosia artemisiifolia (Asteraceae) Following Its Introduction to China

    Get PDF
    The mating system plays a key role during the process of plant invasion. Contemporary evolution of uniparental reproduction (selfing or asexuality) can relieve the challenges of mate limitation in colonizing populations by providing reproductive assurance. Here we examined aspects of the genetics of colonization in Ambrosia artemisiifolia, a North American native that is invasive in China. This species has been found to possess a strong self-incompatibility system and have high outcrossing rates in North America and we examined whether there has been an evolutionary shift towards the dependence on selfing in the introduced range. Specifically, we estimated outcrossing rates in one native and five invasive populations and compared levels of genetic diversity between North America and China. Based on six microsatellite loci we found that, like the native North American population, all five Chinese populations possessed a completely outcrossing mating system. The estimates of paternity correlations were low, ranging from 0.028–0.122, which suggests that populations possessed ∼8–36 pollen donor parents contributing to each maternal plant in the invasive populations. High levels of genetic diversity for both native and invasive populations were found with the unbiased estimate of gene diversity ranging from 0.262–0.289 for both geographic ranges based on AFLP markers. Our results demonstrate that there has been no evolutionary shift from outcrossing to selfing during A. artemisiifolia's invasion of China. Furthermore, high levels of genetic variation in North America and China indicate that there has been no erosion of genetic variance due to a bottleneck during the introduction process. We suggest that the successful invasion of A. artemisiifolia into Asia was facilitated by repeated introductions from multiple source populations in the native range creating a diverse gene pool within Chinese populations

    Propagule Pressure: A Null Model for Biological Invasions

    Full text link
    null model, propagule pressure Invasion ecology has been criticised for its lack of general principles. To explore this criticism, we con-ducted a meta-analysis that examined characteristics of invasiveness (i.e. the ability of species to establish in, spread to, or become abundant in novel communities) and invasibility (i.e. the susceptibility of habitats to the establishment or proliferation of invaders). There were few consistencies among invasiveness char-acteristics (3 of 13): established and abundant invaders generally occupy similar habitats as native species, while abundant species tend to be less affected by enemies; germination success and reproductive output were significantly positively associated with invasiveness when results from both stages (establishment/ spread and abundance/impact) were combined. Two of six invasibility characteristics were also significant: communities experiencing more disturbance and with higher resource availability sustained greater establishment and proliferation of invaders. We also found that even though ‘propagule pressure ’ was considered in only 29 % of studies, it was a significant predictor of both invasiveness and invasibility (55 of 64 total cases). Given that nonindigenous species are likely introduced non-randomly, we contend that ‘propagule biases ’ may confound current paradigms in invasion ecology. Examples of patterns that could be confounded by propagule biases include characteristics of good invaders and susceptible habitats, release from enemies, evolution of ‘invasiveness’, and invasional meltdown. We conclude that propagule pressure should serve as the basis of a null model for studies of biological invasions when inferring process from patterns of invasion
    corecore