11 research outputs found

    Analysis of mental imagery in children's silent reading

    Full text link
    This item was digitized by the Internet Archive. Thesis (Ed.M.)--Boston Universit

    Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability

    No full text
    Boron (B) is essential for plants but toxic when present in excess. Arabidopsis thaliana BOR1 is a B exporter for xylem loading and is essential for efficient B translocation from roots to shoots under B limitation. B translocation to shoots was enhanced under B limitation in WT but not in bor1-1 mutant plants. The enhanced translocation was suppressed upon resupply of high levels of B within several hours. Unlike a number of transporters for essential mineral nutrients, BOR1 mRNA accumulation was not strongly affected by B conditions. However, accumulation of a constitutively expressed BOR1-GFP fusion protein was elevated under conditions of limited B supply. Upon resupply of high levels of B, BOR1-GFP was degraded within several hours. These findings demonstrate that posttranscriptional mechanisms play a major role in regulation of BOR1 accumulation. Confocal laser scanning microscopy of root tip cells showed that BOR1-GFP is localized to the plasma membrane under B limitation. Shortly after B application, the protein was observed in dot-like structures in the cytoplasm before degradation. Colocalization studies of the fusion protein with an endocytic tracer FM4-64 and an endosomal Rab-GTPase Ara7 fused to monomeric red fluorescent protein suggested that BOR1 is transferred from the plasma membrane via the endosomes to the vacuole for degradation. These results establish that endocytosis and degradation of BOR1 are regulated by B availability, to avoid accumulation of toxic levels of B in shoots under high-B supply, while protecting the shoot from B deficiency under B limitation

    An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth

    No full text
    The wall-associated kinases (WAK), a family of five proteins that contain extracellular domains that can be linked to pectin molecules of the cell wall, span the plasma membrane and have a cytoplasmic serine/threonine kinase domain. Previous work has shown that a reduction in WAK protein levels leads to a loss of cell expansion, indicating that these receptor-like proteins have a role in cell shape formation. Here it is shown that a single wak2 mutation exhibits a dependence on sugars and salts for seedling growth. This mutation also reduces the expression and activity of vacuolar invertase, often a key factor in turgor and expansion. WAKs may thus provide a molecular mechanism linking cell wall sensing (via pectin attachment) to regulation of solute metabolism, which in turn is known to be involved in turgor maintenance in growing cells. © 2006 The Authors

    Target of Rapamycin Complex 2 Regulates Actin Polarization and Endocytosis via Multiple Pathways

    No full text
    Target of rapamycin is a Ser/Thr kinase that operates in two conserved multiprotein complexes, TORC1 and TORC2. Unlike TORC1, TORC2 is insensitive to rapamycin, and its functional characterization is less advanced. Previous genetic studies demonstrated that TORC2 depletion leads to loss of actin polarization and loss of endocytosis. To determine how TORC2 regulates these readouts, we engineered a yeast strain in which TORC2 can be specifically and acutely inhibited by the imidazoquinoline NVP-BHS345. Kinetic analyses following inhibition of TORC2, supported with quantitative phosphoproteomics, revealed that TORC2 regulates these readouts via distinct pathways as follows: rapidly through direct protein phosphorylation cascades and slowly through indirect changes in the tensile properties of the plasma membrane. The rapid signaling events are mediated in large part through the phospholipid flippase kinases Fpk1 and Fpk2, whereas the slow signaling pathway involves increased plasma membrane tension resulting from a gradual depletion of sphingolipids. Additional hits in our phosphoproteomic screens highlight the intricate control TORC2 exerts over diverse aspects of eukaryote cell physiology
    corecore