29 research outputs found

    Species-Specific Scaling to Define and Conserve the Northern Great Plains Region

    Get PDF
    Prairie ecosystems are in a continuous state of flux, shifting by processes that include variable weather patterns and climatic conditions, disturbance regimes, and more recently, human-induced modification. Similarly, wildlife resources fluctuate across the landscape as a result of these ever-changing conditions; however, human alterations have increased, removed, and manipulated the ecological processes of the prairie. Specifically, the spatial scales at which humans manage and interact with the landscape are often inconsistent or incompatible with the scales required for the persistence of wildlife populations. Our synthesis demonstrates how the spatial scales at which wildlife in the Northern Great Plains of North America operate have been constrained by human intervention. This process of anthropogenic scaling has affected the decline of many native wildlife populations and in some cases has resulted in the complete extirpation of species from the landscape. We use historical observations and recent quantitative data to describe the primary cause of spatial scale alteration for prairie focal species (i.e. plains bison, pronghorn, grassland birds, Greater Sage-grouse, black-tailed prairie dogs, swift fox, prairie rattlesnakes) using migration, home range, distribution, and dispersal distances as metrics. We then describe the role that spatial scale plays in wildlife management of the prairie landscape from the non-profit, state, and federal perspective and how these entities are managing at the scales of each focal species

    Farmer seed networks make a limited contribution to agriculture? Four common misconceptions

    Get PDF
    The importance of seed provisioning in food security and nutrition, agricultural development and rural livelihoods, and agrobiodiversity and germplasm conservation is well accepted by policy makers, practitioners and researchers. The role of farmer seed networks is less well understood and yet is central to debates on current issues ranging from seed sovereignty and rights for farmers to GMOs and the conservation of crop germplasm. In this paper we identify four common misconceptions regarding the nature and importance of farmer seed networks today. (1) Farmer seed networks are inefficient for seed dissemination. (2) Farmer seed networks are closed, conservative systems. (3) Farmer seed networks provide ready, egalitarian access to seed. (4) Farmer seed networks are destined to weaken and disappear. We challenge these misconceptions by drawing upon recent research findings and the authors’ collective field experience in studying farmer seed systems in Africa, Europe, Latin America and Oceania. Priorities for future research are suggested that would advance our understanding of seed networks and better inform agricultural and food policy

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Forage Value of Invasive Species to the Diet of Rocky Mountain Elk

    No full text
    The winter range of Rocky Mountain elk (Cervus canadensis) throughout the Intermountain West is threatened by invasive plant species including spotted knapweed (Centaurea maculosa) and cheatgrass (Bromus tectorum). These species have direct impacts on pasture and grasslands resulting in substantial forage losses and costs associated with prevention and mitigation. Invasive species cost the United States 120billionannually,withknapweedestimatedtocost120 billion annually, with knapweed estimated to cost 14 million annually to the economy of Montana. Knapweed and cheatgrass are aggressive invaders, and are generally more common in disturbed sites resulting from overgrazing, fire, cultivation, or other forms of ground disturbance, but can invade and transform relatively undisturbed rangeland. The biochemical and physiological characteristics of knapweed allow it to outcompete native plants through greater resource acquisition and inhibition of native plant growth and seed germination. Similarly, cheatgrass may inhibit native grass germination by rapidly outcompeting natives for soil moisture and nitrogen and increase fine dry fuels leading to increased fire intervals that favor cheatgrass dominance.The Rangelands archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform March 202

    Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS

    No full text
    Gene silencing with virally delivered shRNA represents a promising approach for treatment of inherited neurodegenerative disorders. In the present study we develop a subpial technique, which we show in adult animals successfully delivers adeno-associated virus (AAV) throughout the cervical, thoracic and lumbar spinal cord, as well as brain motor centers. One-time injection at cervical and lumbar levels just before disease onset in mice expressing a familial amyotrophic lateral sclerosis (ALS)-causing mutant SOD1 produces long-term suppression of motoneuron disease, including near-complete preservation of spinal α-motoneurons and muscle innervation. Treatment after disease onset potently blocks progression of disease and further α-motoneuron degeneration. A single subpial AAV9 injection in adult pigs or non-human primates using a newly designed device produces homogeneous delivery throughout the cervical spinal cord white and gray matter and brain motor centers. Thus, spinal subpial delivery in adult animals is highly effective for AAV-mediated gene delivery throughout the spinal cord and supraspinal motor centers

    Securing access to seed: social relations and sorghum seed exchange in eastern Ethiopia

    Get PDF
    Access to seed is crucial for farming, though few studies investigate household-level access in the informal `farmer seed systems¿ which still supply most seed in poor countries. This paper uses empirical data of seed exchange practices for sorghum in eastern Ethiopia to analyze how social relationships influence access to off-farm seed for a major crop. Seed shortfalls are common, and farmer¿farmer exchange is important for providing locally-adapted seed to fill this gap, but access varies considerably among households, also affecting quantities supplied and terms of exchange. Preferred sources for off-farm seed (neighbors, government, market) also vary among farmers, reflecting agroecology and asset-ownership, but also differing access to these sources. Social network theories highlight the importance of reciprocal ties, and the cultural norms underpinning them, in accessing seed. These cultural norms are contested, with some claiming that commercial transactions are increasingly common. Implications for interventions supporting farmer seed systems, particularly emergency seed aid, are discussed in relation to the socially-mediated nature of seed acces
    corecore