1,190 research outputs found

    Updated Smoothed Particle Hydrodynamics for Simulating Bending and Compression Failure Progress of Ice

    Get PDF
    In this paper, an updated Smoothed Particle Hydrodynamics (SPH) method based on the Simplified Finite Difference Interpolation scheme (SPH_SFDI) is presented to simulate the failure process of ice. The Drucker–Prager model is embedded into the SPH code to simulate the four point bending and uniaxial compression failure of ice. The cohesion softening elastic–plastic model is also used in the SPH_SFDI framework. To validate the proposed modeling approach, the numerical results of SPH_SFDI are compared with the standard SPH and the experimental data. The good agreement demonstrated that the proposed SPH_SFDI method including the elastic–plastic cohesion softening Drucker–Prager failure model can provide a useful numerical tool for simulating failure progress of the ice in practical field. It is also shown that the SPH_SFDI can significantly improve the capability and accuracy for simulating ice bending and compression failures as compared with the original SPH scheme

    Superfund Reauthorization: Impact on State Environmental Enforcement

    Get PDF
    Branch predictor (BP) is an essential component in modern processors since high BP accuracy can improve performance and reduce energy by decreasing the number of instructions executed on wrong-path. However, reducing the latency and storage overhead of BP while maintaining high accuracy presents significant challenges. In this paper, we present a survey of dynamic branch prediction techniques. We classify the works based on key features to underscore their differences and similarities. We believe this paper will spark further research in this area and will be useful for computer architects, processor designers, and researchers

    Genotypic analyses of cyclosporine-associated lymphoproliferations

    Get PDF

    A distinct mitochondrial myopathy, lactic acidosis and sideroblastic anemia (MLASA) phenotype associates with YARS2 mutations

    Get PDF
    Nuclear-encoded disorders of mitochondrial translation are clinically and genetically heterogeneous. Genetic causes include defects of mitochondrial aminoacyl-tRNA synthetases, and factors required for initiation, elongation and termination of protein synthesis as well as ribosome recycling. We report on a new case of myopathy, lactic acidosis and sideroblastic anemia (MLASA) syndrome caused by defective mitochondrial tyrosyl aminoacylation. The patient presented at 1 year with anemia initially attributed to iron deficiency. Bone marrow aspirate at 5 years revealed ringed sideroblasts but transfusion dependency did not occur until 11 years. Other clinical features included lactic acidosis, poor weight gain, hypertrophic cardiomyopathy and severe myopathy leading to respiratory failure necessitating ventilatory support. Long-range PCR excluded mitochondrial DNA rearrangements. Clinical diagnosis of MLASA prompted direct sequence analysis of the YARS2 gene encoding the mitochondrial tyrosyl-tRNA synthetase, which revealed homozygosity for a known pathogenic mutation, c.156C>G;p.F52L. Comparison with four previously reported cases demonstrated remarkable clinical homogeneity. First line investigation of MLASA should include direct sequence analysis of YARS2 and PUS1 (encoding a tRNA modification factor) rather than muscle biopsy. Early genetic diagnosis is essential for counseling and to facilitate appropriate supportive therapy. Reasons for segregation of specific clinical phenotypes with particular mitochondrial aminoacyl tRNA-synthetase defects remain unknown. © 2013 Wiley Periodicals, Inc

    Patient and Public Involvement Refines the Design of ProtOeus: A Proposed Phase II Trial of Proton Beam Therapy in Oesophageal Cancer

    Get PDF
    Background: Neoadjuvant chemoradiotherapy for oesophageal cancer significantly improves overall survival but is associated with severe post-operative complications. Proton beam therapy may reduce these toxicities by sparing normal tissues compared with standard radiotherapy. ProtOeus is a proposed randomised phase II study of neoadjuvant chemoradiotherapy in oesophageal cancer that compares proton beam therapy to standard radiotherapy techniques. As proton beam therapy services are often centralised in academic centres in major cities, proton beam therapy trials raise distinct challenges including patient acceptance of travelling for proton beam therapy, coordination of treatments with local centres and ensuring equity of access for patients. Methods: Focus groups were held early in the trial development process to establish patients’ views on the trial proposal. Topics discussed include perception of proton beam therapy, patient acceptability of the trial pathway and design, patient-facing materials, and common clinical scenarios. Focus groups were led by the investigators and facilitated by patient involvement teams from the institutions who are involved in this research. Responses for each topic were analysed, and fed back to the trial’s development group. Results: Three focus groups were held in separate locations in the UK (Manchester, Cardiff, Wigan). Proton beam therapy was perceived as superior to standard radiotherapy making the trial attractive. Patients felt strongly that travel costs should be reimbursed to ensure equity of access to proton beam therapy. They were very supportive of a shorter treatment schedule and felt that toxicity reduction was the most important endpoint. Discussion and Conclusions: Incorporating patient views early in the trial development process resulted in significant trial design refinements including travel/accommodation provisions, choice of primary endpoint, randomisation ratio and fractionation schedule. Focus groups are a reproducible and efficient method of incorporating the patient and public voice into research

    The sponge microbiome within the greater coral reef microbial metacommunity

    Get PDF
    Much recent marine microbial research has focused on sponges, but very little is known about how the sponge microbiome fits in the greater coral reef microbial metacommunity. Here, we present an extensive survey of the prokaryote communities of a wide range of biotopes from Indo-Pacific coral reef environments. We find a large variation in operational taxonomic unit (OTU) richness, with algae, chitons, stony corals and sea cucumbers housing the most diverse prokaryote communities. These biotopes share a higher percentage and number of OTUs with sediment and are particularly enriched in members of the phylum Planctomycetes. Despite having lower OTU richness, sponges share the greatest percentage (>90%) of OTUs with >100 sequences with the environment (sediment and/or seawater) although there is considerable variation among sponge species. Our results, furthermore, highlight that prokaryote microorganisms are shared among multiple coral reef biotopes, and that, although compositionally distinct, the sponge prokaryote community does not appear to be as sponge-specific as previously thought.publishe

    Fully-automated μMRI morphometric phenotyping of the Tc1 mouse model of Down Syndrome

    Get PDF
    We describe a fully automated pipeline for the morphometric phenotyping of mouse brains from μMRI data, and show its application to the Tc1 mouse model of Down syndrome, to identify new morphological phenotypes in the brain of this first transchromosomic animal carrying human chromosome 21. We incorporate an accessible approach for simultaneously scanning multiple ex vivo brains, requiring only a 3D-printed brain holder, and novel image processing steps for their separation and orientation. We employ clinically established multi-atlas techniques-superior to single-atlas methods-together with publicly-available atlas databases for automatic skull-stripping and tissue segmentation, providing high-quality, subject-specific tissue maps. We follow these steps with group-wise registration, structural parcellation and both Voxel- and Tensor-Based Morphometry-advantageous for their ability to highlight morphological differences without the laborious delineation of regions of interest. We show the application of freely available open-source software developed for clinical MRI analysis to mouse brain data: NiftySeg for segmentation and NiftyReg for registration, and discuss atlases and parameters suitable for the preclinical paradigm. We used this pipeline to compare 29 Tc1 brains with 26 wild-type littermate controls, imaged ex vivo at 9.4T. We show an unexpected increase in Tc1 total intracranial volume and, controlling for this, local volume and grey matter density reductions in the Tc1 brain compared to the wild-types, most prominently in the cerebellum, in agreement with human DS and previous histological findings

    Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellum of the Tc1 mouse model of Down Syndrome - a comprehensive morphometric analysis with active staining contrast-enhanced MRI

    Get PDF
    Down Syndrome is a chromosomal disorder that affects the development of cerebellar cortical lobules. Impaired neurogenesis in the cerebellum varies among different types of neuronal cells and neuronal layers. In this study, we developed an imaging analysis framework that utilizes gadolinium-enhanced ex vivo mouse brain MRI. We extracted the middle Purkinje layer of the mouse cerebellar cortex, enabling the estimation of the volume, thickness, and surface area of the entire cerebellar cortex, the internal granular layer, and the molecular layer in the Tc1 mouse model of Down Syndrome. The morphometric analysis of our method revealed that a larger proportion of the cerebellar thinning in this model of Down Syndrome resided in the inner granule cell layer, while a larger proportion of the surface area shrinkage was in the molecular layer

    Mapping Cosmic Dawn and Reionization: Challenges and Synergies

    Get PDF
    Cosmic dawn and the Epoch of Reionization (EoR) are among the least explored observational eras in cosmology: a time at which the first galaxies and supermassive black holes formed and reionized the cold, neutral Universe of the post-recombination era. With current instruments, only a handful of the brightest galaxies and quasars from that time are detectable as individual objects, due to their extreme distances. Fortunately, a multitude of multi-wavelength intensity mapping measurements, ranging from the redshifted 21 cm background in the radio to the unresolved X-ray background, contain a plethora of synergistic information about this elusive era. The coming decade will likely see direct detections of inhomogenous reionization with CMB and 21 cm observations, and a slew of other probes covering overlapping areas and complementary physical processes will provide crucial additional information and cross-validation. To maximize scientific discovery and return on investment, coordinated survey planning and joint data analysis should be a high priority, closely coupled to computational models and theoretical predictions.Comment: 5 pages, 1 figure, submitted to the Astro2020 Decadal Survey Science White Paper cal
    corecore