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Nuclear-encoded disorders of mitochondrial translation are

clinically and genetically heterogeneous. Genetic causes include

defects of mitochondrial aminoacyl-tRNA synthetases, and fac-

tors required for initiation, elongation and termination of pro-

tein synthesis as well as ribosome recycling. We report on a new

case of myopathy, lactic acidosis and sideroblastic anemia

(MLASA) syndrome caused by defective mitochondrial tyrosyl

aminoacylation. The patient presented at 1 year with anemia

initially attributed to iron deficiency. Bone marrow aspirate at

5 years revealed ringed sideroblasts but transfusion dependency

did not occur until 11 years. Other clinical features included

lactic acidosis, poor weight gain, hypertrophic cardiomyopathy

and severe myopathy leading to respiratory failure necessitating

ventilatory support. Long-range PCR excluded mitochondrial

DNA rearrangements. Clinical diagnosis of MLASA prompted

direct sequence analysis of the YARS2 gene encoding the mito-

chondrial tyrosyl-tRNA synthetase, which revealed homozygos-

ity for a known pathogenic mutation, c.156C>G;p.F52L.

Comparison with four previously reported cases demonstrated

remarkable clinical homogeneity. First line investigation of

MLASA should include direct sequence analysis of YARS2 and

PUS1 (encoding a tRNAmodification factor) rather thanmuscle

biopsy. Early genetic diagnosis is essential for counseling and to

facilitate appropriate supportive therapy. Reasons for segrega-

tion of specific clinical phenotypes with particular mitochondri-

al aminoacyl tRNA-synthetase defects remain unknown.
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by Wiley Periodicals, Inc.
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INTRODUCTION

The congenital sideroblastic anemias are rare inborn errors of

metabolism caused by defects of mitochondrial energy production,
2013 The Authors. American Journal of Medical Genetics Par
heme biosynthesis and iron–sulfur cluster biogenesis [Bergmann

et al., 2010; Fleming, 2011]. The most commonly recognized

congenital sideroblastic anemias are X-linked sideroblastic anemia

(XLSA) secondary to mutations in ALAS2 encoding delta amino

levulinic acid synthetase, and the Pearson marrow-pancreas syn-

drome caused by sporadically arising large-scale rearrangements of

the mitochondrial genome. Mitochondrial DNA (mtDNA) enc-

odes 13 polypeptide subunits of the oxidative phosphorylation
t A/ Published by Wiley Periodicals, Inc. 2334
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(OXPHOS) system, together with 22 transfer RNA (tRNA) and two

ribosomalRNA(rRNA)molecules required for intramitochondrial

synthesis of these 13 polypeptides. The mtDNA rearrangements in

Pearson syndrome typically delete several tRNA genes, leading to

global impairment ofmitochondrial translation [Rotig et al., 1995].

More recently, nuclear-encoded disorders of mitochondrial trans-

lation are emerging including two gene defects (PUS1 and YARS2

mutations) that appear to specifically associate with a syndrome of

myopathy, lactic acidosis and sideroblastic anemia (MLASA)

[Bykhovskaya et al., 2004; Riley et al., 2010; Rotig, 2011].

XLSA and Pearson syndrome can be easily distinguished clini-

cally since the former causes a pure sideroblastic anemia phenotype

(which may be late-onset and not require regular transfusions),

whilst the latter causes an infantile-onset transfusion-dependent

sideroblastic anemia associated with lactic acidosis and multisys-

tem disturbances. Clinical manifestations of Pearson syndrome

include exocrine and endocrine pancreatic insufficiency, renal

tubulopathy and faltering growth [Rotig et al., 1995]. Death in

infancy or early childhood frequently follows overwhelming lactic

acidosis or acute liver failure [Rotig et al., 1995]. Survivorsdevelopa

progressive neurological disorder including ophthalmoplegia, car-

diac conduction defects and cerebellar ataxia, within the Kearns–

Sayre syndrome spectrum [McShane et al., 1991; Rahman and

Leonard, 2000].

YARS2mutations have previously been reported in four patients

from three apparently unrelated families [Riley et al., 2010; Sasar-

man et al., 2012]. Here we describe another case of MLASA caused

by YARS2 mutation and show that this is a clinically distinct

phenotype that can be diagnosed without recourse to muscle

biopsy, the “gold-standard” method for diagnosing mitochondrial

disease.
PATIENT AND METHODS

Thepatient, the second child of healthy unrelated Lebanese parents,

was born at term after an uncomplicated pregnancy. Two siblings

aged 7 and 16 years are healthy. Aged 1 year, following an episode of

pallor and jaundice, the patient was diagnosed with iron deficiency

anemia and was prescribed iron supplements. At 5 years, the family

migrated to the UK and he was diagnosed with congenital side-

roblastic anemia following a bone marrow aspirate (Fig. 1a).

Pyridoxine was commenced and his hemoglobin remained stable

(9–11 g/dl) until 11.5 years. At 10 years he presented with abdomi-

nal pain, poorweight gain and lethargy.Upper gastrointestinal (GI)

endoscopy revealed reflux esophagitis and patchy duodenal ery-

thema with mild focal lymphocyte infiltration. Poor growth and

intermittent vomiting persisted despite serial interventions includ-

ing gluten-free diet and nasogastric, gastrostomy and (eventually)

parenteral feeding. Repeat upper GI endoscopy and video capsule

endoscopy revealedmultiple ileal ulcers, and an atrophic duodenal

bulb, with absent villi and duodenal ulcers. A trial of azathioprine

and prednisolone was commenced for presumed inflammatory

bowel disease.

At 11.5 years he developed transfusion-dependent anemia;

repeat bone marrow aspiration and trephine biopsy appearances

were unchanged. The worsening anemia was initially attributed to

chronic low-grade gastrointestinal bleeding. He also required
twice-weekly granulocyte colony stimulating factor infusions for

neutropenia. Nine months later he developed shortness of breath

and was found to have a pericardial effusion, necessitating peri-

cardiocentesis. Transthoracic echocardiogram also showed severe

biventricular hypertrophy with preserved biventricular systolic

function. Due to recurrent episodes of dizziness he underwent

24 hr Holter monitoring which showed sinus rhythm.

At 12.5 years he became increasingly lethargic, with declining

weight despite parenteral nutrition and regular transfusions every

2–3 weeks. Examination showed myopathic facies, bilateral ptosis,

pallor and cachexia, (weight 23.6 kg, 0.4th centile and height

139.9 cm, 2nd centile), with generalized muscle weakness. Electro-

myography demonstrated severe myopathic changes. Sleep study

revealed severe hypoventilationwith evidence of CO2 retention and

he was commenced on nocturnal BiPAP ventilation. Blood inves-

tigations showed anemia (Hb 6.2�8.4 g/dl), neutropenia (neutro-

phils 0.26 � 109/L), elevated lactate and respiratory acidosis

(venous blood gas pH 7.3, pCO2 9.9 kPa, HCO3 37 mmol/L).

Plasma amino acids demonstrated raised alanine (1113 mmol/L,

reference range 150–450) and low arginine (28 mmol/L, reference

range 40–120). Acylcarnitine analysis revealed low free carnitine

levels. Urine organic acid analysis demonstrated strongly raised

lactate andpyruvatewithmoderately raised 2-hydroxybutyrate and

mildly raised 2-hydroxyisovalerate, secondary to disturbed lactate

metabolism. Stool elastase was normal (>500 mg/g, normal>200).

All genetic studies were performed with informed parental

consent and ethical approval for the study was obtained from

the National Research Ethics Committee London Bloomsbury,

UK. Long-range PCR of mitochondrial DNA was used to screen

for large-scale mtDNA rearrangements. Because of a clinical suspi-

cion of MLASA syndrome, and the Lebanese origin of the patient,

theYARS2 genewas sequenced in the patient andbothparents. PCR

amplification was performed using primers and conditions as

previously reported, and PCR products were directly sequenced

on an ABI PRISM 3730 automated sequencer (Source Biosciences)

[Riley et al., 2010]. Sequence comparisons and analysis were

performed using the Sequencher program, V.4.9.
RESULTS

Long range PCR of genomic DNA extracted from peripheral blood

leucocytes did not detect any mtDNA rearrangements, excluding

Pearson syndrome. On the basis of phenotype similarities between

our patient and previously reported patients we sequenced the

YARS2 gene, which encodes the human mitochondrial tyrosyl-

RNA synthetase, and identified a homozygous mutation, c.156C

> G;p.F52L (Fig. 1b), which affects a highly conserved amino acid

residue and has previously been reported to be pathogenic [Riley

et al., 2010].
DISCUSSION

The combination of sideroblastic anemia and lactic acidosis is

strongly suspicious of a mitochondrial disorder. In infantile-onset

sideroblastic anemia with lactic acidosis, the most frequent cause is

Pearson marrow-pancreas syndrome associated with single large-

scale mtDNA rearrangements. Several lines of evidence argued



FIG. 1. a: Bone marrow aspirate stained for iron with Perls’ Prussian blue stain (original magnification 60�). Arrows indicate two of the

numerous ringed sideroblasts seen. b: Sequence electropherogram of part of exon 1 of the YARS2 gene. The control sequence is wild-type

homozygous (top panel) whilst the patient is homozygous for the c.156C>G mutation resulting in proline to leucine substitution (second

panel) and the parents are both heterozygous (lower two panels).
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against Pearson syndrome in our patient: continuing transfusion

dependency at 13 years (in Pearson syndrome transfusion depen-

dency typically resolves by the age of 2 years, as mutant mtDNA is

progressively cleared from rapidly dividing hemopoietic cells),

absence of pancreatic insufficiency (normal stool elastase levels),

lack of neurological symptoms other than myopathy by teenage

years (inparticular, no evidenceof cerebellar ataxia), and absence of

renal tubulopathy, pigmentary retinopathy and sensorineural hear-

ing loss (which are all typical of Pearson and Kearns–Sayre syn-

dromes) [Pitceathly et al., 2012]. The bone marrow appearances

were also atypical for Pearson syndrome, in which there is usually

vacuolization of early erythroid and myeloid progenitors in addi-

tion to thepresence of ringed sideroblasts,whereas inourpatient no

significant vacuolization was seen. Finally, Pearson syndrome was

definitively excluded in our patient by the absence of mtDNA

rearrangements in leukocyte DNA.

A clinically more fitting diagnosis in our patient was MLASA,

that is, mitochondrial myopathy, lactic acidosis and sideroblastic

anemia syndrome. This was confirmed by YARS2 analysis, which

revealed homozygosity for the known pathogenic mutation c.156C

>G;p.F52L. Parents were both heterozygous for the mutation,

although they are not known to be related, lending weight to the

hypothesis that this is a Lebanese founder mutation [Riley

et al., 2010]. Two different homozygous mutations have been

reported in YARS2, c.156C>G;p.F52L (as in our patient) and

c.137G>A;p.G46D, in three apparently unrelated families of Leb-

anese descent. Our patient is the fifth with YARS2 mutations

reported to date. All five patients had MLASA.
A characteristic clinical phenotype of YARS2-related MLASA

syndrome appears to be emerging (Table I). Gastro-intestinal

disturbance and feeding difficulties appear to occur frequently in

MLASA, whereas exocrine pancreatic insufficiency (a cardinal

feature of Pearson syndrome) has never been reported. Respiratory

failure requiring ventilatory support and cardiomyopathy were

present in two cases including ours. In Pearson and Kearns–Sayre

syndromes cardiomyopathy may occur, but the most significant

cardiac problem is usually heart block, which has not been reported

in MLASA. Compared to Pearson syndrome, hearing and vision

appear to be relatively spared in YARS2-associated MLASA. One

case had asymmetric ptosis and limitation of lateral gaze bilaterally

in his thirties [Sasarman et al., 2002], while no hearing loss was

reported in any of the five cases.

There appears to be a common pathogenic mechanism in

Pearson syndrome and MLASA, namely global impairment of

mitochondrial translation, manifest histologically by a ragged-

red fiber myopathy with subsarcolemmal mitochondrial prolifera-

tion. In Pearson syndromemultiple mitochondrial tRNA genes are

deleted, whilst in MLASA caused by PUS1 mutations there is a

defect in post-transcriptional modification (pseudouridylation) of

multiple mitochondrial and cytosolic tRNAs [Patton et al., 2005].

YARS2 mutations lead to failure of aminoacylation of the mito-

chondrial tRNA tyrosine. Interestingly the common 4,977 bp

mtDNA deletion causing Pearson syndrome does not include

the tRNA for tyrosine [Rotig et al., 1995]. Only two mutations

have previously been reported in the MT-TY gene encoding the

mitochondrial tRNA tyrosine molecule, and neither of these was



TABLE I. Clinical Phenotype Associated with YARS2 Autations

Reference Riley et al. [2010] Sasarman et al. [2012] a This report
Patient P1 P2 P3 P4 P5
Sex M F F M M
Age at onset 10 weeks Infancy 7y 31y 1y
Age at death 18y Alive at 16y Alive at 24y Alive at 34y Alive at 13y
Consanguinity Yes Yes Yes No
Family history Sibling (P2) Sibling (P1) Maternal aunt

died of SA
at 26yb

No Paternal uncle
similarly affectedb

Ethnicity Lebanese Lebanese Lebanese Lebanese Lebanese
Sideroblastic anemia Yes Yes Yes Yes Yes
Transfusion-dependent Yes—initially

2–3 monthly,
later every
3–4 weeks

Yes No No From 11.5y

Faltering growth Yes — — — Yes
Dysphagia/feeding
difficulties

Yes—eventually
permanent
vocal cord
paresis

Yes — — Yes

Hypertrophic
cardiomyopathy

Yes — — — Yes

Exercise intolerance Yes Yes Yes Yes Yes
Respiratory failure 17y — No — 12y
Blood lactate (mmol/L) 3–13.7 2.5–8.4 4.1 3.8 5.6–10.1
Muscle histology “Incipient , reduced

COX staining
Lipid vacuoles Severely reduced

COX staining and
increased SDH;

EMsubsarcolemmal
aggregation of

peripheral mitochondria,
many containing

crystalline inclusions

ND

Muscle respiratory
chain enzyme
activities
(% of control)

CI CI CI CI (<6%) ND

CIV CIII CIV CIII (41%)
CIV CIV (4%)

YARS2 mutations Homozygous Homozygous Homozygous Homozygous c.137G >
A;p.G46D

Homozygous

c.156C > G;p.52L c.156C > G;p.52L c.156C > G;p.52L c.156C > G;p.52L

Key: CI, complex I; CII þ III, complexes II þ III; CIII, complex III; CIV, complex IV; COX, cytochrome c oxidase; ND, not determined; RRF, ragged red fibres;—, information not provided in original report.aClinical
features of P4 initially reported in Sasarman et al. [2002].
bThese individuals have not been tested for YARS2 mutations.
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associated sideroblastic anemia, providing further evidence that

impaired translation of tyrosine residues is not the cause of side-

roblastic anemia [Pulkes et al., 2000; Scaglia et al., 2003]. However,

the twopatients didhave someclinical features in commonwithour

patient with YARS2 mutations, namely myopathy and lactic aci-

dosis in the first case and cardiomyopathy in the second, arguing for

a role for impaired tyrosine aminoacylation in causation of some of

the features ofMLASA [Pulkes et al., 2000; Scaglia et al., 2003]. The

mechanistic link between YARS2 and PUS1 mutations is also
unclear. PUS1 has been shown to modify bases 27 and/or 28 of

several mitochondrial tRNA species [Suzuki et al., 2011], but the

pseudouridylation status of mitochondrial tRNA tyrosine has not

yet been reported.

Defects of several other mitochondrial tRNA aminoacyl synthe-

tases do not appear to cause congenital sideroblastic anemia

[Konovalova and Tyynismaa, 2013]. Moreover, a large number

of nuclear-encoded mitochondrial translation defects have now

been described and most are not associated with congenital side-
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roblastic anemia [Rotig, 2011]. The reasons for the tissue specificity

associated with YARS2 and PUS1 mutations are currently not

understood, but it is possible that the YARS2 protein has a second

function necessary for hematopoeisis that may be unrelated to its

role in mitochondrial protein synthesis. Moonlighting functions

are recognised for other mitochondrial proteins, for example one

subunit of respiratory chain complex I is a tumour suppressor and

another is involved in caspase-independent cell death, whilst vari-

ous complex I assembly factors have been implicated in immune

pathways and to enhance tumour growth in some cancers [Rahman

and Thorburn, 2013].

In conclusion, patients with congenital sideroblastic anemia

should be assessed for features ofMLASA and consideration should

be given to screening theYARS2 gene in patients with lactic acidosis

and sideroblastic anemia persisting beyond early childhood, par-

ticularly if mtDNA deletions have been excluded. Although no

specific curative therapies are available, early diagnosis and initia-

tion of appropriate supportive therapy is likely to be important in

the prevention of the longterm complications of this disorder.

Direct targeting of the YARS2 and PUS1 genes in MLASA patients

can avoid invasive muscle biopsy for diagnosis of this subgroup of

inborn errors of mitochondrial metabolism.

ACKNOWLEDGMENTS

S.R. is supported by Great Ormond Street Hospital Children’s

Charity and Y.W. by a Wellcome Trust Research Training Fellow-

ship. We gratefully acknowledge funding from the Muscular Dys-

trophy Campaign.
REFERENCES

Bergmann AK, Campagna DR, McLoughlin EM, Agarwal S, Fleming MD,
Bottomley SS, Neufeld EJ. 2010. Systematic molecular genetic analysis of
congenital sideroblastic anemia: evidence for genetic heterogeneity and
identification of novel mutations. Pediatr Blood Cancer 54:273–278.

Bykhovskaya Y, Casas K, Mengesha E, Inbal A, Fischel-Ghodsian N. 2004.
Missense mutation in pseudouridine synthase 1 (PUS1) causes mito-
chondrial myopathy and sideroblastic anemia (MLASA). Am J Hum
Genet 74:1303–1308.

FlemingMD.2011.Congenital sideroblastic anemias: Iron andheme lost in
mitochondrial translation. Hematology Am SocHematol Educ Program
2011:525–531.
Konovalova S, Tyynismaa H. 2013. Mitochondrial aminoacyl-tRNA syn-
thetases in human disease. Mol Genet Metab 108:206–211.

McShane MA, Hammans SR, Sweeney M, Holt IJ, Beattie TJ, Brett EM,
Harding AE. 1991. Pearson syndrome and mitochondrial encephalomy-
opathy inapatientwith adeletionofmtDNA.AmJHumGenet 48:39–42.

Patton JR, Bykhovskaya Y,Mengesha E, Bertolotto C, Fischel-Ghodsian N.
2005. Mitochondrial myopathy and sideroblastic anemia (MLASA):
missense mutation in the pseudouridine synthase 1 (PUS1) gene is
associated with the loss of tRNA pseudouridylation. J Biol Chem
280:19823–19828.

Pitceathly RD, Rahman S, HannaMG. 2012. Single deletions inmitochon-
drial DNA–molecular mechanisms and disease phenotypes in clinical
practice. Neuromuscul Disord 22:577–586.

Pulkes T, Siddiqui A, Morgan-Hughes JA, Hanna MG. 2000. A novel
mutation in the mitochondrial tRNA(TYr) gene associated with exercise
intolerance. Neurology 55:1210–1212.

Rahman S, Leonard JV. 2000. Early onset of complete heart block in
Pearson syndrome. J Inherit Metab Dis 23:753–754.

Rahman S, Thorburn DR. 2013. 189th ENMC International workshop
Complex I deficiency: Diagnosis and treatment 20–22 April 2012,
Naarden, The Netherlands. Neuromuscul Disord 23:506–515.

Riley LG, Cooper S, Hickey P, Rudinger-Thirion J,MckenzieM, Compton
A, Lim SC, Thorburn D, Ryan MT, Giege R, Bahlo M, Christodoulou J.
2010. Mutation of the mitochondrial tyrosyl-tRNA synthetase gene,
YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia–
MLASA syndrome. Am J Hum Genet 87:52–59.

Rotig A. 2011. Human diseases with impaired mitochondrial protein
synthesis. Biochim Biophys Acta 1807:1198–1205.

RotigA,BourgeronT,ChretienD,RustinP,MunnichA. 1995. Spectrumof
mitochondrial DNA rearrangements in the Pearson marrow-pancreas
syndrome. Hum Mol Genet 4:1327–1330.

Sasarman F, Karpati G, Shoubridge EA. 2002. Nuclear genetic control of
mitochondrial translation in skeletal muscle revealed in patients with
mitochondrial myopathy. Hum Mol Genet 11:1669–1681.

Sasarman F, Nishimura T, Thiffault I, Shoubridge EA. 2012. A novel
mutation in YARS2 causes myopathy with lactic acidosis and sidero-
blastic anemia. Hum Mutat 33:1201–1206.

Scaglia F, Vogel H, Hawkins EP, Vladutiu GD, Liu LL, Wong LJ. 2003.
Novel homoplasmic mutation in the mitochondrial tRNATyr gene
associated with atypical mitochondrial cytopathy presenting with focal
segmental glomerulosclerosis. Am J Med Genet Part A 123A:172–178.

Suzuki T, Nagao A, Suzuki T. 2011. Human mitochondrial tRNAs:
Biogenesis, function, structural aspects, and diseases. Annu Rev Genet
45:299–329.


