8 research outputs found

    Identification of Burkholderia pseudomallei Genes Induced During Infection of Macrophages by Differential Fluorescence Induction

    Get PDF
    This is the final version. Available on open access from Frontiers media via the DOI in this recordData Availability Statement: The datasets GENERATED for this study can be found in the SNBI SRA accession PRJNA599542.Burkholderia pseudomallei, the causative agent of melioidosis, can survive and replicate in macrophages. Little is known about B. pseudomallei genes that are induced during macrophage infection. We constructed a B. pseudomallei K96243 promoter trap library with genomic DNA fragments fused to the 5′ end of a plasmid-borne gene encoding enhanced green fluorescent protein (eGFP). Microarray analysis showed that the library spanned 88% of the B. pseudomallei genome. The recombinant plasmids were introduced into Burkholderia thailandensis E264, and promoter fusions active during in vitro culture were removed. J774A.1 murine macrophages were infected with the promoter trap library, and J774A.1 cells containing fluorescent bacteria carrying plasmids with active promoters were isolated using flow cytometric-based cell sorting. Candidate macrophage-induced B. pseudomallei genes were identified from the location of the insertions containing an active promoter activity. A proportion of the 138 genes identified in this way have been previously reported to be involved in metabolism and transport, virulence, or adaptation. Novel macrophage-induced B. pseudomallei genes were also identified. Quantitative reverse-transcription PCR analysis of 13 selected genes confirmed gene induction during macrophage infection. Deletion mutants of two macrophage-induced genes from this study were attenuated in Galleria mellonella larvae, suggesting roles in virulence. B. pseudomallei genes activated during macrophage infection may contribute to intracellular life and pathogenesis and merit further investigation toward control strategies for melioidosis.Mahidol University, ThailandThailand Research Fun

    The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation

    Get PDF
    © 2014 The Authors Journal compilation. ©2014 Biochemical Society.This is an open access article that is freely available in ORE or from the publisher's website. Please cite the published version.Published by Portland Press on behalf of the Biochemical SocietyTA (toxin-antitoxin) systems are widely distributed amongst bacteria and are associated with the formation of antibiotic tolerant (persister) cells that may have involvement in chronic and recurrent disease. We show that overexpression of the Burkholderia pseudomallei HicA toxin causes growth arrest and increases the number of persister cells tolerant to ciprofloxacin or ceftazidime. Furthermore, our data show that persistence towards ciprofloxacin or ceftazidime can be differentially modulated depending on the level of induction of HicA expression. Deleting the hicAB locus from B. pseudomallei K96243 significantly reduced persister cell frequencies following exposure to ciprofloxacin, but not ceftazidime. The structure of HicA(H24A) was solved by NMR and forms a dsRBD-like (dsRNA-binding domain-like) fold, composed of a triple-stranded β-sheet, with two helices packed against one face. The surface of the protein is highly positively charged indicative of an RNA-binding protein and His24 and Gly22 were functionality important residues. This is the first study demonstrating a role for the HicAB system in bacterial persistence and the first structure of a HicA protein that has been experimentally characterized.Wellcome Trus

    ELM: the status of the 2010 eukaryotic linear motif resource

    Get PDF
    Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a ‘Bar Code’ format, which also displays known instances from homologous proteins through a novel ‘Instance Mapper’ protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation

    Correlating Genotyping Data of Coxiella burnetii with Genomic Groups

    No full text
    Coxiella burnetii is a zoonotic pathogen that resides in wild and domesticated animals across the globe and causes a febrile illness, Q fever, in humans. Several distinct genetic lineages or genomic groups have been shown to exist, with evidence for different virulence potential of these lineages. Multispacer Sequence Typing (MST) and Multiple-Locus Variable number tandem repeat Analysis (MLVA) are being used to genotype strains. However, it is unclear how these typing schemes correlate with each other or with the classification into different genomic groups. Here, we created extensive databases for published MLVA and MST genotypes of C. burnetii and analysed the associated metadata, revealing associations between animal host and human disease type. We established a new classification scheme that assigns both MST and MLVA genotypes to a genomic group and which revealed additional sub-lineages in two genomic groups. Finally, we report a novel, rapid genomotyping method for assigning an isolate into a genomic group based on the Cox51 spacer sequence. We conclude that by pooling and streamlining existing datasets, associations between genotype and clinical outcome or host source were identified, which in combination with our novel genomotyping method, should enable an estimation of the disease potential of new C. burnetii isolates

    Bacterial drug tolerance under clinical conditions is governed by anaerobic adaptation but not anaerobic respiration

    Get PDF
    Non-inherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show that, compared to E. coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. Measuring the dynamics of the formation of drug-tolerant cells, under conditions that mimic in vivo infections, we show that in Burkholderia oxygen levels affect the formation of these cells. The drug-tolerant cells are characterised by an anaerobic metabolic signature and can be eliminated by oxygenation of the system, or by the addition of nitrate. The transcriptome profile suggest that these cells are not dormant persister cells, and are likely to be drug-tolerant as a consequence of the up-regulation of anaerobic nitrate respiration, efflux pumps, beta lactamases and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions which are used to study drug-tolerant and persister cells in vitro
    corecore