1,550 research outputs found

    Extending the host range of Listeria monocytogenes by rational protein design

    Get PDF
    SummaryIn causing disease, pathogens outmaneuver host defenses through a dedicated arsenal of virulence determinants that specifically bind or modify individual host molecules. This dedication limits the intruder to a defined range of hosts. Newly emerging diseases mostly involve existing pathogens whose arsenal has been altered to allow them to infect previously inaccessible hosts. We have emulated this chance occurrence by extending the host range accessible to the human pathogen Listeria monocytogenes by the intestinal route to include the mouse. Analyzing the recognition complex of the listerial invasion protein InlA and its human receptor E-cadherin, we postulated and verified amino acid substitutions in InlA to increase its affinity for E-cadherin. Two single substitutions increase binding affinity by four orders of magnitude and extend binding specificity to include formerly incompatible murine E-cadherin. By rationally adapting a single protein, we thus create a versatile murine model of human listeriosis

    Landscape-scale establishment and population spread of yellow-cedar (Callitropsis nootkatensis) at a leading northern range edge

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2016Yellow-cedar is a long-lived conifer of the North Pacific Coastal Temperate Rainforest region that is thought to be undergoing a continued natural range expansion in southeast Alaska. Yellow-cedar is locally rare in northeastern portions of the Alexander Archipelago, and the fairly homogenous climate and forest conditions across the region suggest that yellow-cedar's rarity could be due to its local migrational history rather than constraints on its growth. Yellow-cedar trees in northern range edge locations appear to be healthy, with few dead trees; additionally, yellow-cedar tend to be younger than co-dominant mountain and western hemlock trees, indicating recent establishment in existing forests. To explore yellow-cedar's migration in the region, and determine if the range is expanding into unoccupied habitat, I located 11 leading edge yellow-cedar populations near Juneau, Alaska. I used the geographic context of these populations to determine the topographic, climatic, and disturbance factors associated with range edge population establishment. I used those same landscape variables to model suitable habitat for the species at the range edge. Based on habitat modeling, yellow-cedar is currently only occupying 0.8 percent of its potential landscape niche in the Juneau study area. Tree ages indicate that populations are relatively young for the species, indicating recent migration, and that most populations established during the Little Ice Age climate period (1100 -- 1850). To determine if yellow-cedar is continuing to colonize unoccupied habitat in the region, I located 29 plots at the edges of yellow-cedar stands to measure regeneration and expansion into existing forest communities. Despite abundant suitable habitat, yellow-cedar stand expansion appears stagnant in recent decades. On average, seedlings only dispersed 4.65 m beyond stand boundaries and few seedlings reached mature heights both inside and outside of existing yellow-cedar stands. Mature, 100 --200-year-old trees were often observed abruptly at stand boundaries, indicating that most standboundaries have not moved in the past ~150 years. When observed, seedlings were most common in high light understory plant communities and moderately wet portions of the soil drainage gradient, consistent with the species' autecology in the region. Despite an overall lack of regeneration via seed, yellow-cedar is reproducing via asexual layering in high densities across stands. Layering may be one strategy this species employs to slowly infill habitat and/or persist on the landscape until conditions are more favorable for sexual reproduction. This study leads to a picture of yellow-cedar migration as punctuated, and relatively slow, in southeast Alaska. Yellow-cedar's migration history and currently limited spread at the northeastern range edge should be considered when planning for the conservation and management of this high value tree under future climate scenarios

    A Chemical Genomics Approach to Drug Reprofiling in Oncology: Antipsychotic Drug Risperidone as a Potential Adenocarcinoma Treatment

    Get PDF
    Drug reprofiling is emerging as an effective paradigm for discovery of cancer treatments. Herein, an antipsychotic drug is immobilised using the Magic Tag® chemical genomics tool and screened against a T7 bacteriophage displayed library of polypeptides from Drosophila melanogaster, as a whole genome model, to uncover an interaction with a section of 17-β-HSD10, a proposed prostate cancer target. A computational study and enzyme inhibition assay with full length human 17-β-HSD10 identifies risperidone as a drug reprofiling candidate. When formulated with rumenic acid, risperidone slows proliferation of PC3 prostate cancer cells in vitro and retards PC3 prostate cancer tumour growth in vivo in xenografts in mice, presenting an opportunity to reprofile risperidone as a cancer treatment

    Boston University Symphony Orchestra, April 29, 2014

    Full text link
    This is the concert program of the Boston University Symphony Orchestra performance on Tuesday, April 29, 2014 at 8:00 p.m., at the Tsai Performance Center, 685 Commonwealth Avenue, Boston, Massachusetts. Works performed were Elegy by Edward Elgar, Snow Storm by Felipe Pinto D'Aguiar, Violin Concerto in D minor by Jean Sibelius, Concerto No. 2 in E-flat by Carl Maria von Weber, and Piano Concerto No. 1 in D-flat by Sergei Prokofiev. Digitization for Boston University Concert Programs was supported by the Boston University Humanities Library Endowed Fund

    The genome of the protozoan parasite Cystoisospora suis and a reverse vaccinology approach to identify vaccine candidates

    Get PDF
    Vaccine development targeting protozoan parasites remains challenging, partly due to the complex interactions between these eukaryotes and the host immune system. Reverse vaccinology is a promising approach for direct screening of genome sequence assemblies for new vaccine candidate proteins. Here, we applied this paradigm to Cystoisospora suis, an apicomplexan parasite that causes enteritis and diarrhea in suckling piglets and economic losses in pig production worldwide. Using Next Generation Sequencing we produced an ∼84 Mb sequence assembly for the C. suis genome, making it the first available reference for the genus Cystoisospora. Then, we derived a manually curated annotation of more than 11,000 protein-coding genes and applied the tool Vacceed to identify 1,168 vaccine candidates by screening the predicted C. suis proteome. To refine the set of candidates, we looked at proteins that are highly expressed in merozoites and specific to apicomplexans. The stringent set of candidates included 220 proteins, among which were 152 proteins with unknown function, 17 surface antigens of the SAG and SRS gene families, 12 proteins of the apicomplexan-specific secretory organelles including AMA1, MIC6, MIC13, ROP6, ROP12, ROP27, ROP32 and three proteins related to cell adhesion. Finally, we demonstrated in vitro the immunogenic potential of a C. suis-specific 42 kDa transmembrane protein, which might constitute an attractive candidate for further testing

    Cytometric analysis, genetic manipulation and antibiotic selection of the snail embryonic cell line Bge from Biomphalaria glabrata, the intermediate host of Schistosoma mansoni.

    Get PDF
    The invertebrate cell line, Bge, from embryos of the snail Biomphalaria glabrata, remains to date the only established cell line from any species of the Phylum Mollusca. Since its establishment in 1976 by Eder Hansen, few studies have focused on profiling its cytometrics, growth characteristics or sensitivity to xenobiotics. Bge cells are reputed to be challenging to propagate and maintain. Therefore, even though this cell line is a noteworthy resource, it has not been studied widely. With growing interest in functional genomics, including genetic transformation, to elucidate molecular aspects of the snail intermediate hosts responsible for transmission of schistosomiasis, and aiming to enhance the convenience of maintenance of this molluscan cell line, we deployed the xCELLigene real time approach to study Bge cells. Doubling times for three isolates of Bge, termed CB, SL and UK, were longer than for mammalian cell lines - longer than 40 h in complete Bge medium supplemented with 7% fetal bovine serum at 25 °C, ranging from ∼42 h to ∼157 h when 40,000 cells were seeded. To assess the potential of the cells for genetic transformation, antibiotic selection was explored. Bge cells were sensitive to the aminonucleoside antibiotic puromycin (from Streptomyces alboniger) from 5 μg/ml to 200 ng/ml, displaying a half maximal inhibitory concentration (IC50) of ∼1.91 μg/ml. Sensitivity to puromycin, and a relatively quick kill time (<48 h in 5 μg/ml) facilitated use of this antibiotic, together with the cognate resistance gene (puromycin N-acetyl-transferase) for selection of Bge cells transformed with the PAC gene (puroR). Bge cells transfected with a plasmid encoding puroR were partially rescued when cultured in the presence of 5 μg/ml of puromycin. These findings pave the way for the development of functional genomic tools applied to the host-parasite interaction during schistosomiasis and neglected tropical trematodiases at large

    The Quill -- October 29, 1975

    Get PDF

    ILR Faculty Publications 2008-09

    Get PDF
    The production of scholarly research continues to be one of the primary missions of the ILR School. During a typical academic year, ILR faculty members published or had accepted for publication over 25 books, edited volumes, and monographs, 170 articles and chapters in edited volumes, numerous book reviews. In addition, a large number of manuscripts were submitted for publication, presented at professional association meetings, or circulated in working paper form. Our faculty's research continues to find its way into the very best industrial relations, social science and statistics journals.Faculty_Publications_2008_09.pdf: 36 downloads, before Oct. 1, 2020

    Maine Campus October 18 1983

    Get PDF
    corecore