443 research outputs found

    Chaotic Diffusion in the Gliese-876 Planetary System

    Get PDF
    Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disk, and a natural consequence of irregular motion. In this paper we show that resonant multi-planetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over timescales comparable to their age.Using the GJ-876 system as an example, we analyze the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincar\'e maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behavior of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.Comment: 13 pages, 7 figures, 2 tables. Accepted for publication in MNRA

    Global Dynamics in Galactic Triaxial Systems I

    Get PDF
    In this paper we present a theoretical analysis of the global dynamics in a triaxial galactic system using a 3D integrable Hamiltonian as a simple representation. We include a thorough discussion on the effect of adding a generic non--integrable perturbation to the global dynamics of the system. We adopt the triaxial Stackel Hamiltonian as the integrable model and compute its resonance structure in order to understand its global dynamics when a perturbation is introduced. Also do we take profit of this example in order to provide a theoretical discussion about diffussive processes taking place in phase space.Comment: Accepted A&

    A randomized, double-blind, placebo-controlled trial to assess safety and tolerability during treatment of type 2 diabetes with usual diabetes therapy and either Cycloset™ or placebo

    Get PDF
    Background: Cycloset™ is a quick-release formulation of bromocriptine mesylate, a dopamine agonist, which in animal models of insulin resistance and type 2 diabetes acts centrally to reduce resistance to insulin- mediated suppression of hepatic glucose output and tissue glucose disposal. In such animals, bromocriptine also reduces hepatic triglyceride synthesis and free fatty acid mobilization, manifesting decreases in both plasma triglycerides and free fatty acids. In clinical trials, morning administration of Cycloset™ either as monotherapy or adjunctive therapy to sulfonylurea or insulin reduces HbA1c levels relative to placebo by 0.55–1.2. Cycloset™ therapy also reduces plasma triglycerides and free fatty acid by approximately 25% and 20%, respectively, among those also receiving sulfonylurea therapies. The effects of once-daily morning Cycloset™ therapy on glycemic control and plasma lipids are demonstrable throughout the diurnal portion of the day (7 a.m. to 7 p.m.) across postprandial time points. Methods/Design: 3,095 individuals were randomized in a 2:1 ratio into a one year trial aimed to assess the safety and efficacy of Cycloset™ compared to placebo among individuals receiving a variety of treatments for type 2 diabetes. Eligibility criteria for this randomized placebo controlled trial included: age 30–80, HbA1c ≤ 10%, diabetes therapeutic regimen consisting of diet or no more than two hypoglycemic agents or insulin with or without one additional oral agent (usual diabetes therapy; UDT). The primary safety endpoint will test the hypothesis that the rate of all-cause serious adverse events after one year of usual diabetes therapy (UDT) plus Cycloset™ is not greater than that for UDT plus placebo by more than an acceptable margin defined as a hazard ratio of 1.5 with a secondary endpoint analysis of the difference in the rate of serious cardiovascular events, (myocardial infarction, stroke, coronary revascularization or hospitalization for or angina or congestive heart failure). Efficacy analyses will evaluate effects of Cycloset™ versus placebo on change from baseline in HbA1c, fasting glucose, body weight, waist circumference, blood pressure and plasma lipids. Discussion: This study will extend the current data on Cycloset™ safety, tolerability and efficacy in individuals with type 2 diabetes to include its effects in combination with thiazolodinediones, insulin secretagogues, metformin, alpha-glucosidase inhibitors and exogenous insulin regimens. Trial registration: clinical trials.gov NCT0037767

    Phase space structures and ionization dynamics of hydrogen atom in elliptically polarized microwaves

    Full text link
    The multiphoton ionization of hydrogen atoms in a strong elliptically polarized microwave field exhibits complex features that are not observed for ionization in circular and linear polarized fields. Experimental data reveal high sensitivity of ionization dynamics to the small changes of the field polarization. The multidimensional nature of the problem makes widely used diagnostics of dynamics, such as Poincar\'{e} surfaces of section, impractical. We analyze the phase space dynamics using finite time stability analysis rendered by the fast Lyapunov Indicators technique. The concept of zero--velocity surface is used to initialize the calculations and visualize the dynamics. Our analysis provides stability maps calculated for the initial energy at the maximum and below the saddle of the zero-velocity surface. We estimate qualitatively the dependence of ionization thresholds on the parameters of the applied field, such as polarization and scaled amplitude

    Application of the MEGNO technique to the dynamics of Jovian irregular satellites

    Full text link
    We apply the MEGNO (Mean Exponential Growth of Nearby Orbits) technique to the dynamics of Jovian irregular satellites. We demonstrate the efficiency of applying the MEGNO indicator to generate a mapping of relevant phase-space regions occupied by observed jovian irregular satellites. The construction of MEGNO maps of the Jovian phase-space region within its Hill-sphere is addressed and the obtained results are compared with previous studies regarding the dynamical stability of irregular satellites. Since this is the first time the MEGNO technique is applied to study the dynamics of irregular satellites we provide a review of the MEGNO theory. We consider the elliptic restricted three-body problem in which Jupiter is orbited by a massless test satellite subject to solar gravitational perturbations. The equations of motion of the system are integrated numerically and the MEGNO indicator computed from the systems variational equations. An unprecedented large set of initial conditions are studied to generate the MEGNO maps. The chaotic nature of initial conditions are demonstrated by studying a quasi-periodic orbit and a chaotic orbit. As a result we establish the existence of several high-order mean-motion resonances detected for retrograde orbits along with other interesting dynamical features. The computed MEGNO maps allows to qualitatively differentiate between chaotic and quasi-periodic regions of the irregular satellite phase-space given only a relatively short integration time. By comparing with previous published results we can establish a correlation between chaotic regions and corresponding regions of orbital instability.Comment: 15 pages, 13 figures, 2 tables, submitted to MNRA

    Fingerprinting the impacts of global change on tropical forests

    Get PDF
    Recent observations of widespread changes in mature tropical forests such as increasing tree growth, recruitment and mortality rates and increasing above-ground biomass suggest that 'global change' agents may be causing predictable changes in tropical forests. However, consensus over both the robustness of these changes and the environmental drivers that may be causing them is yet to emerge. This paper focuses on the second part of this debate. We review (i) the evidence that the physical, chemical and biological environment that tropical trees grow in has been altered over recent decades across large areas of the tropics, and (ii) the theoretical, experimental and observational evidence regarding the most likely effects of each of these changes on tropical forests. Ten potential widespread drivers of environmental change were identified: temperature, precipitation, solar radiation, climatic extremes (including El Niño Southern Oscillation events), atmospheric CO2 concentrations, nutrient deposition, O3/acid depositions, hunting, land-use change and increasing liana numbers. We note that each of these environmental changes is expected to leave a unique 'fingerprint' in tropical forests, as drivers directly force different processes, have different distributions in space and time and may affect some forests more than others (e.g. depending on soil fertility). Thus, in the third part of the paper we present testable a priori predictions of forest responses to assist ecologists in attributing particular changes in forests to particular causes across multiple datasets. Finally, we discuss how these drivers may change in the future and the possible consequences for tropical forests

    Movimiento estocástico en un campo central con una barra débil sin rotación

    Get PDF
    Presentamos un nuevo método para evaluar el comportamiento global de órbitas en un potencial dado, mediante el cómputo de la entropía del mapa de Poincaré para un conjunto dado de condiciones iniciales. Utilizamos este método para evaluar el grado de estocacidad global del movimiento en un campo central perturbado por una barra débil sin rotación. Nos interesa particularmente hallar condiciones iniciales adecuadas para que se produzca la inestabilidad de órbitas radiales, mostrando nuestros resultados que la estocacidad juega un papel primordial en este problema.Asociación Argentina de Astronomí

    Mapping the ν\nu_\odot Secular Resonance for Retrograde Irregular Satellites

    Get PDF
    Constructing dynamical maps from the filtered output of numerical integrations, we analyze the structure of the ν\nu_\odot secular resonance for fictitious irregular satellites in retrograde orbits. This commensurability is associated to the secular angle θ=ϖϖ\theta = \varpi - \varpi_\odot, where ϖ\varpi is the longitude of pericenter of the satellite and ϖ\varpi_\odot corresponds to the (fixed) planetocentric orbit of the Sun. Our study is performed in the restricted three-body problem, where the satellites are considered as massless particles around a massive planet and perturbed by the Sun. Depending on the initial conditions, the resonance presents a diversity of possible resonant modes, including librations of θ\theta around zero (as found for Sinope and Pasiphae) or 180 degrees, as well as asymmetric librations (e.g. Narvi). Symmetric modes are present in all giant planets, although each regime appears restricted to certain values of the satellite inclination. Asymmetric solutions, on the other hand, seem absent around Neptune due to its almost circular heliocentric orbit. Simulating the effects of a smooth orbital migration on the satellite, we find that the resonance lock is preserved as long as the induced change in semimajor axis is much slower compared to the period of the resonant angle (adiabatic limit). However, the librational mode may vary during the process, switching between symmetric and asymmetric oscillations. Finally, we present a simple scaling transformation that allows to estimate the resonant structure around any giant planet from the results calculated around a single primary mass.Comment: 11 pages, 13 figure
    corecore