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ABSTRACT

We present a theoretical analysis of the global dynamics in a triaxial galactic system using a 3D integrable Hamiltonian as a simple
representation. We include a thorough discussion on the effect of adding a generic non-integrable perturbation to the global dynamics
of the system. We adopt the triaxial Stäckel Hamiltonian as the integrable model and compute its resonance structure in order to
understand its global dynamics when a perturbation is introduced. We provide a theoretical discussion about diffusive processes
taking place in phase space.
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1. Introduction

Observations with HST revealed the presence of very high stellar
densities at the centers of early-type galaxies (Crane et al. 1993;
Ferrarese et al. 1994), suggesting a power law (r−γ) fit for them.
The evidence for large central masses was also reforced from
high-resolution kinematic studies of nuclear stars and gas, which
revealed the presence of compact dark objects with masses in the
range of 106.5−109.5 M�, presumably super-massive black holes
(Ford et al. 1998). These observational results have produced
a substantial change in the classic thinking on dynamics in triax-
ial galaxies.

Results obtained from numerical simulations show that the
addition of a central mass to an integrable triaxial potential has
strong effects on its dynamics, at least for the boxlike orbits that
cover the central region of triaxial galaxies. Black holes and cen-
tral density cusps scatter these particular orbits during each close
passage inducing chaos in the system. The sensitivity of boxlike
orbits to deflections also leads to a rounder central distribution
of mass (see for instance Gerhard & Binney 1985, and Udry
& Pfenniger 1988). This slow evolution towards axisymmetry
suggests that stationary triaxial configurations cannot exist for a
central density cusp. Valluri & Merritt (1998) find that in most of
early-type galaxies, chaotic evolution is determined by the mass
of the central black hole, (Mbh), rather than by the slope of the
density profile. They show that when the central mass contains
2% of the galaxy mass, a transition to global stochasticity oc-
curs. For such large values of Mbh, the box-orbit phase space is
almost completely stochastic and diffusive processes could take
place over very short timescales.

This result is substantially attractive because this critical
black hole mass was close to the observed one (Kormendy
& Ritchstone 1995) and also close to the mass that induced
a sudden evolution toward axisymmetry in N-body simulations
(Merritt & Quinlan 1998). However, this is no longer true, since
from the works of, for instance, Ferrarese & Merritt (2000) and
Merritt & Ferrarese (2001) it is known that the mass of black

holes in galaxies, derived from the black hole demographic rela-
tionships, are 0.1−0.2% of the ellipsoid mass in which they are
embedded.

Merritt & Fridman (1996) arrive at the same conclusion an-
alyzing two triaxial power law models: the steep (γ = 2) and
the weak (γ = 1) cusp. They find, in agreement with Gerhard
& Binney (1985) and Schwarzschild (1993), that triaxial galax-
ies with such high concentration of mass would evolve toward
a central axisymmetry, as box orbits gradually lose their dis-
tinguishability. For these models, in which a large fraction of
phase space is dominated by chaotic dynamics, the construction
of self-consistent solutions requires the inclusion of stochastic
orbits as well as the regular ones. A system thus built evolves,
mainly close to its center, as stochastic orbits mix, through phase
space. In order to obtain stationary solutions, they build the
“fully-mixed models” keeping stochastic orbits out of the cen-
tral part of the system where chaotic orbits mix ergodically driv-
ing to a rounder distribution and destroying the triaxial self-
consistency. They find that although it is possible to build this
kind of solution for a weak cusp model, this is not the case for
a strongly concentrated model. This would imply that triaxil-
ity is not consistent with a high central density. The discussion
of the existance of stationary non-axisymetric stellar systems is
still open. Poon & Merritt (2002) were able to construct triax-
ial equilibrium with central black holes which were both regular
and stable, but under a very strong assumption. They need the
chaotic building blocks to be fully mixed for the triaxial equilib-
ria to co-exist with central singularities, and there is no evidence
yet that in 3D systems with divided phase space, a completely
connected chaotic component actually exists. Moreover, it seems
that this could happen only when the chaotic component has a
large measure (∼1) and t → ∞, which, from a physical point
of view, would not be possible in galactic systems (see for in-
stance Giordano & Cincotta 2004 and references therein and also
Sect. 5).

All these conclusions rest on the strong hypothesis that diffu-
sive processes drive stochastic orbits to mix, covering all chaotic
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regions of phase space on a timescale of the order of the Hubble
time. Taking into account the fundamental role that diffusive pro-
cesses should play in galactic dynamics (as well as in asteroidal
and planetary dynamics), we will discuss the relevance of dif-
fusive processes in phase space theoretically as well as numer-
ically. In this first paper we address the theoretical discussion;
numerical studies will be presented in a forthcoming paper.

Global dynamics of triaxial galactic systems have been stud-
ied in previous works, for example by Wachlin & Ferraz-Mello
(1998) and Papaphilippou & Laskar (1998). They represented el-
liptical galaxies using, respectively, a generalization of a double-
power-law spherical mass model and the axisymmetric softened
version of the 3D logarithmic potential. For these models, they
applied frequency map analysis (Laskar 1993) in order to in-
vestigate the orbital structure of the system. Both analyses re-
vealed stochastic motion in both models. Although they show
the main resonances of these systems and investigate the rele-
vance of chaotic motion in these models, they did not focus on
the study of the diffusive mechanisms that may present in these
systems. Moreover, the frequency map analysis is not an efficient
tool for such of studies since it does not provide a good measure
of chaos (see Cincotta & Simó 2000; Cincotta et al. 2003).

Here, we compute the theoretical resonant structure of an in-
tegrable triaxial system. Particularly, we focus our attention on
the Stäckel triaxial model, which we assume to be a rough ap-
proximation of an elliptical galaxy. Then we add a generic non-
integrable perturbation in order to show how the resonance struc-
ture is distorted by the effect of this perturbation.

In Sect. 2, we briefly recall the main characteristics of the
integrable triaxial Stäckel model. Numerical details related to
the computation of the resonances and the analysis of the reso-
nance structure are presented in Sect. 3. In Sect. 4, we review and
provide a theoretical discussion about the transition to chaos as
a consequence of resonance interaction. Finally, we discuss the
different processes that could lead to chaotic diffusion in phase
space.

2. The integrable model

Motion in a smooth gravitational field becomes quite simple if
the number of isolating integrals equals the number of degrees
of freedom, and much work in galactic dynamics has focused
on finding integrable models for galactic potentials. Kuzmin
(1956, 1973) showed that there is a unique, ellipsoidally strat-
ified mass model for which the corresponding potential has
three global integrals of the motion, quadratic in the veloci-
ties. Kuzmin’s model, explored in detail by de Zeeuw (1985)
who called it the “Perfect Ellipsoid”, has a large, constant-
density core in which the orbital motion is similar to that of
a three-dimensional linear oscillator. Every orbit in the core of
the Perfect Ellipsoid fills a region close to a rectangular paral-
lelepiped, or box. These trajectories were called box orbits. At
higher energies in the Perfect Ellipsoid, box orbits persist and
three new orbital families appear: the tubes (inner and outer
long axis tubes and short axis tubes), orbits that preserve the di-
rection of their circulation around either the long or short axis
of the figure. Tube orbits respect an integral of motion anal-
ogous to the angular momentum, and hence – unlike box or-
bits – avoid the center. As pointed out by Schwarzschild (1981),
these four families, box, inner and outer long axis tubes and
short axis tubes, reproduce the general form of triaxial galaxies.
The Perfect Ellipsoid model has been used by several authors as
a first approximation to represent an elliptical galaxy.

In this section, we address some relevant aspects of the
integrable Stäckel model – separable in ellipsoidal coordi-
nates – whose three global integrals of motion admit analytical
expressions.

The Perfect Ellipsoid is represented by stratified density
function distributed over concentric ellipsoids of semi-axes ma,
mb and mc, given by

ρ =
ρ0

(1 + m2)2
, (1)

where ρ0 represents the central density and m,

m2 =
x2

a2
+
y2

b2
+

z2

c2
, a ≥ b ≥ c ≥ 0, (2)

is constant on an ellipsoidal shell. Following Chandrasekhar
(1969), it is possible to obtain the potential for the Perfect
Ellipsoid, which in ellipsoidal coordinates (λ, µ, ν) adopts the
Stäckel form:

V(λ, µ, ν) = − 1

4h2
λ

G(λ)
(λ + β)

− 1
4h2

µ

G(µ)
(µ + β)

− 1
4h2

ν

G(ν)
(ν + β)

, (3)

where α = −a2, β = −b2, γ = −c2 and h2
λ, h2

µ, h2
ν are the met-

ric coefficients of the ellipsoidal coordinates and G(τ) is a func-
tion given in terms of an elliptical integral of the third kind (see
de Zeeuw 1985).

The Stäckel model has three explicit global analytic inte-
grals, namely the adelphic integrals I2 and I3 and the total en-
ergy H, and indeed all orbits in it can be determined in terms of
simple quadratures.

The adelphic integrals can be considered as generalizations
of the angular momentum integrals that exist in axisymmetric
and spherical potentials, but also as generalizations of the energy
integrals always present in separable potentials in Cartesian co-
ordinates. Every orbit in Stäckel potential is the sum of three mo-
tions, one in each coordinate. As a result, motion is bounded by
coordinate surfaces.

The adelphic integrals I2 and I3 are, in fact, linear combina-
tions of other integrals J and K:

I2 =
α2H + αJ + K

α − γ , I3 =
γ2H + γJ + K

γ − α , (4)

where the energy H, J and K are functions of the ellipsoidal co-
ordinates and conjugate momenta (see de Zeeuw 1985).

As a consequence of the separability of the Stäckel potential,
the equations of motion can be recast as:

p2
τ =

H − Veff(τ)
2(τ + β)

, (5)

where τ = λ, µ, ν, and Veff(τ) denotes the effective potential,

Veff(τ) =
I2

(τ + α)
+

I3

(τ + γ)
−G(τ). (6)

This characteristic of the system allows us to analyze the orbital
structure according to the values of p2

τ for each set of chosen val-
ues of the integrals. Since the motion is only possible for p2

τ ≥ 0,
τ = λ, µ, ν, the motion in each coordinate is either an oscillation
between turning points defined by p2

τ = 0, or a rotation when-
ever p2

τ > 0 for all τ. The combination of these two kinds of mo-
tion will determine the class of orbit. The ranges where p2

τ are
non-negative define a volume space, determined by the integrals,
where the motion takes place. Thus, the orbital structure of the
system may well be studied by analyzing the values of (5) for
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Fig. 1. Orbital Classification for the Perfect Ellipsoid in the I2I3-plane,
for a fixed value of the energy E = −0.3, de Zweeu (1985). Curves
drawn in this plane are separatrices of different families of orbits.

different combinations of chosen values for its integrals. Such
a systematic study can be performed by fixing one of the inte-
grals to compute the momenta in the space determined by the
two remaining ones.

de Zeeuw (1985) carried out a detailed classification of or-
bits for this Stäckel model by analyzing the tridimensional space
of integrals. A projection of this space on the energy surface is
shown in Fig. 1, where the two inner curves in the figure separate
the four different orbital families: box, inner and outer long axis
tubes and short axis tubes. These curves are separatices of differ-
ent kinds of motion and they play a central role in the dynamics
of the system when it is perturbed (see Sect. 4).

Although the properties of this model have already been
thoroughly studied (de Zeeuw & Lynden-Bell 1985), we will
complement them by computing and analyzing the resonance
structure of the system in its integrals space. The knowledge of
this resonance structure will allow us to predict the global dy-
namical behavior of the system when a non-integrable perturba-
tion is introduced.

3. Resonance structure of the integrable model

In order to understand how an integrable system is modified by
the effect of a non-integrable perturbation, we require a picture
of its resonance structure, since it yields a preliminary knowl-
edge of the way in which resonances in the integrable system
may be distorted when a perturbation is turned on, avoiding the
integration of the equations of motion and the variational ones.
Further, this gives us information about the mechanisms that
could give rise to the transition from regularity to chaos by dif-
ferent processes.

In the present section, we compute the resonance structure
for the integrable Stäckel model in the non-perturbed integral
space I = (H, I2, I3). At this stage we introduce action-angle
variables, which in many respects are the natural variables for
the description of the motion. Indeed, from the geometrical point
of view the actions (which are functions of the global integrals)
define the tori structure that foliate the phase space. For given
values of the action, the angle variables describe the orbit on the
torus.

Thus, we briefly outline the procedure for the case of mo-
tion separable in ellipsoidal coordinates, whose results apply not
only to the particular case of the Perfect Ellipsoid, but to every
Stäckel potential. The action variables Jτ associated with each
ellipsoidal coordinate are defined by

Jτ =
1

2π

∮
pτdτ =

2
π

∫ τmax

τmin

pτdτ, τ = λ, µ, ν, (7)

where, from Eqs. (5) and (6), the momenta pτ can be written
(de Zweeu 1985)

p2
τ =

H − I2/(τ + α) − I3/(τ + γ) +G(τ)
2(τ + β)

, (8)

and the integration is performed over all values of τ for which
pτ2 ≥ 0.

From Eqs. (7) and (8) we obtain Jτ = Jτ(H, I2, I3) and de-
noting the action vector by J = (Jλ, Jν, Jµ), we can formally
invert this relation in order to get H(J). For given values of the
integrals, H = E, I2 = i2 and I3 = i3, we get the values of
the actions Jτ that fix the torus where the motion takes place.
The associated angle variables θτ, canonically conjugate to the
actions Jτ, are linear functions of the time t,

θτ = ωτ(J) · t + θτ(0), (9)

where θτ(0) are constants determined by the three remnant initial
conditions and the quantities (integrals) ωτ(J) given by

ω(J) =
∂H(J)
∂J

(10)

are the frequencies of the motion in each degree of freedom.
If the three frequencies are incommensurable, the orbit

densely fills the volume allowed to it by the values of the inte-
grals of motion, i.e. the region where p2

τ are non-negative. Thus,
for these particular values of the actions (or the integrals) we
have a strong non-resonant 3D torus on which the motion is er-
godic. This occurs when the frequencies satisfy the so-called
diophantine condition (see, for instance, Giorgili 1990) which
states that for a given integer vector m the frequency vector
satisfies

|m · ω| ≥ γ |m|−α, |m| = |m1| + |m2| + |m3|, (11)

where γ > 0 and α > 2 in case of a 3D system. Whenever
a relation of the form

m · ω(J) = 0, m ∈ Z3/0 (12)

is satisfied, we obtain a resonance condition for the actions or the
frequencies. Those values of the actions that fulfill (12) lead to
a resonant torus, that is, orbits are not ergodic on a 3D torus but
on a 2-dimensional one. It may be interpreted that the resonance
condition provides a relation between the actions that lead to
a new local integral which confines the motion to a manifold of
lower dimensionality.

In order to obtain the resonance structure on an energy sur-
face, a particular value of the energy H has to be fixed and the
resonance condition (12) solved for each value of J .

The frequencies for ellipsoidal coordinates are given by (10)
and, since actions do not admit explicit analytical expressions in
terms of the integrals, frequencies (10) have to be calculated by
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numerical means. Indeed, since H = H(Jλ, Jµ, Jν), we may write
(de Zweeu 1985)

∂H
∂H
= ωλ

∂Jλ
∂H
+ ωµ

∂Jµ
∂H
+ ων

∂Jν
∂H
= 1,

∂H
∂I2
= ωλ

∂Jλ
∂I2
+ ωµ

∂Jµ
∂I2
+ ων

∂Jν
∂I2
= 0, (13)

∂H
∂I3
= ωλ

∂Jλ
∂I3
+ ωµ

∂Jµ
∂I3
+ ων

∂Jν
∂I3
= 0.

Then,

ωλ =
1
∆

∂(Jµ, Jν)

∂(I2, I3)
, ωµ =

1
∆

∂(Jν, Jλ)
∂(I2, I3)

, ων =
1
∆

∂(Jλ, Jµ)

∂(I2, I3)
, (14)

where we have written

∆ =
∂(Jλ, Jµ, Jν)

∂(H, I2, I3)
· (15)

The partial derivatives that occur in the above expressions can
be evaluated by differentiating under the integrals, (7)

∂Jτ
∂H
=

2
π

∫ τmax

τmin

dτ
(τ + β)pτ

,

∂Jτ
∂I2
= −2

π

∫ τmax

τmin

dτ
(τ + α)(τ + β)pτ

, (16)

∂Jτ
∂I3
= −2

π

∫ τmax

τmin

dτ
(τ + β)(τ + γ)pτ

·

The values τmin and τmax define the range in each ellipsoidal
coordinate where the motion is allowed, that is, the coordinate
space regions where the condition p2

τ ≥ 0 is satisfied. The above
formulas permit the calculation of the actions Jτ and the fre-
quencies ωτ without integrating the equations of motion. For
a Stäckel potential, and given values E, i2, i3 of the integrals of
motion, the actions follows from (7), and the frequencies can be
computed from (14) and (17).

Thus, in order to compute the frequencies for particular val-
ues of H, I2 and I3, we have to integrate (17) by numerical
means and obtain the roots of p2

τ = 0, which provides the values
of τmin and τmax. This numerical procedure restricts the accuracy
with which the frequencies are obtained. We have calculated
the integration limits in (17) by means of the zbrent subroutine
(Press et al. 1994), setting the tolerance parameter equal to 10−6.
Further, we have performed the numerical integration for (17)
by means of the Romberg method -implemented in the midpoint
and qromo subroutines (Press et al. 1994) – with an accuracy of
the order of 10−10. Also, for particular values of the integrals H,
I2 and I3, the functions involved in (17) are not well defined
for τmin and τmax. This shortcoming has been avoided by shrink-
ing the integration ranges to (τmin+δτ, τmax−δτ), dτ ∼ 10−4 being
a suitable value as a compromise between the need to minimize
the final errors in the frequencies and the computational time
required to the whole numerical procedure.

From the analysis of all the above factors that affect the ac-
curacy with which the frequencies can be obtained, in practice
we take as the resonance condition the relation

|m · ω(J)| ≈ 10−4, (17)

which determines the different resonant surfaces in the integrals
space (H, I2, I3).

In order to visualize the resonance structure of the
Stäckel model, we fix a value for the energy H, which defines

Fig. 2. Resonance structure of the Perfect Ellipsoid onto the I2I3-plane,
for a particular value of the energy E = −0.3. The curves shown in this
figure are the intersection of the energy surface and several resonant
surfaces calculated from (17) for different resonant vectors m satisfying
|m| = |m1| + |m2| + |m3| < 8 (see text).

the energy surface in the integrals space. Figure 2 shows the
resonance structure for the Perfect Ellipsoid in the I2I3-plane,
corresponding to H = −0.3, this particular value of the en-
ergy being in the range −0.9074 ≤ E < 0 corresponding to the
Stäckel model, representative of the dynamical behavior of the
system. The curves shown in this figure arise from the intersec-
tions between the energy surface and several resonant surfaces
calculated from (17), in terms of I2 and I3, for different resonant
vectors m satisfying the condition |m| = |m1|+ |m2|+ |m3| < 8. As
far a we know, this is the first attempt to compute the resonance
structure for this model.

In order to understand how the resonance structure of
the Stäckel model determines the orbital structure of the sys-
tem, in Fig. 3 we present three particular resonances, namely,
(1,−3, 2), (1,−2, 1) and (3,−1,−1), as well as three tori located
in different regions on the I2I3-plane. Over these tori, orbits will
proceed with different dynamical features depending on their
location with respect to the resonant curves. Thus, the non-
resonant torus depicted in the figure lies in a region of the phase
space where the resonant condition does not hold for any m (or
where the diophantine condition (11)holds), and any orbit ly-
ing on such a 3D torus will cover it densely and uniformly as
t → ∞. As mentioned above, in the 3D torus the motion is
ergodic. Meanwhile, motion on a torus located on a resonant
curve is such that any trajectory inhabits a submanifold of di-
mensionality two as a consequence of the resonance condition.
Therefore, an orbit on such a torus will densely cover a 2D (el-
liptic) torus, the resonant torus. Closure in configuration space
requires an additional, independent resonance condition. Any
torus located on the intersection of two resonances will lead to
a periodic orbit since the two independent resonance conditions
restrict the motion to one dimension (a 1D torus).

Figures 1 and 2 show the orbital structure in the
Stäckel model. The internal curves in Fig. 1, given by I2 = 0
and E = Veff(−β), play an important role as they bound as
well as separate the four regions corresponding to the four fam-
ilies of orbits of the Perfect Ellipsoid. The separatrices are very
unstable, even a very small perturbation dramatically modi-
fies the dynamics on them. In the integrable model the smooth
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Fig. 3. The three different resonances (1,−3, 2), (1,−2, 1)
and (3,−1,−1) shown in the figure were extracted from Fig. 2
(see text).

separatrices are present because the stable and unstable mani-
folds of a given object (in this case a 2D hyperbolic torus) ex-
actly match. However, in the surroundings of the separatrices,
the resonance structure is rather intricate.

The resonance structure of the integrable Stäckel model al-
lows us to forecast what the dynamical behavior of the system
could be if a non-integrable perturbation would be added. As
it will be discussed in the next seccion, the interaction of reso-
nances are responsible for the start of chaotic motion when a per-
turbation is turned on.

4. Theoretical discussion of the perturvative effects

Though a deep insight into the dynamics of the perturbed
Stäckel system gained by numerical means will be addressed in
a forthcoming paper, several of its main features can be inferred
from the resonance structure of the integrable model.

We review a theoretical discussion of how a perturbation
would modify the dynamics of the integrable Stäckel model,
following the general description given by Chirikov (1979)
and Cincotta (2002). We consider a system represented by the
Hamiltonian

H(J , θ) = H0(J) + εV(J , θ), (18)

where

εV(J , θ) = ε
∑

m

Vm(J) cos (m · θ). (19)

Here (J , θ) denote the tridimensional action-angle coordinates
for the unpertubed Hamiltonian H0, m is a tridimensional in-
teger vector, Vm certain real functions and ε, the perturbation
parameter, is a real number.

Elliptical galaxies might be represented by a smooth triaxial
potential H0, like the Stäckel one, plus a perturbation given by
a multipolar expansion, εV . We therefore assume that the pertur-
bation is analytic, which may not be the case if we add a central
singularity.

For ε = 0 we have H = H0(J) and the motion is sta-
ble1 for any initial condition, since we have the complete set

1 Except for the unstable periodic orbtis, which form a set of zero
measure.

of the three integrals of motion Ji (H0 being cyclic in θ), i.e. the
Hamiltonian is completely integrable. The phase vector evolves
linearly with time with a frequency vectorω(J) = ∂H0/∂J , with
det (∂ωi/∂J j) � 0 so that ω(J) is a one-to-one function. This
condition guarantees the nonlinearity of the system.

The presence of the perturbation in general disrupts the in-
tegrability of the Hamiltonian H0 (due to the phase dependence
of V), leading to a variation of the unperturbed integrals Ji. The
stability of the motion breaks down when a large change in the
actions takes place, i.e., when a “gross” instability sets up.

To describe the motion of a star in the Hamiltonian (18)
and (19), we take advantage of a perturbative technique to ob-
tain approximate solutions, assuming that the perturbation pa-
rameter is small, ε 
 1, that is, we consider a near-integrable
Hamiltonian system. The perturbative approach given by the so-
called asymptotic series implies, roughly, that the variation of
the unperturbed actions is computed via a power series in the
perturbation parameter.

It is well known that the effect of a perturbative Fourier com-
ponent (as in (19)) is stronger as long as the time variation of its
phase, ψ̇m = m · θ̇, is slow. In the limit case of constant phase we
reach the resonance condition for the unperturbed frequencies.
If we are far from a resonance (i.e., the initial conditions corre-
spond to values of the actions or the frequencies that satisfy the
diophafntine condition (11)), it can be shown that the motion is
stable. On taking advantage of the so-called averaging method,
we neglect the oscillating part of the perturbation, retaining only
its average value.

When we are near to a resonance condition, the asymptotic
series technique no longer work due to the appearance of the so-
called small denominators in the coefficients of the asymptotic
series. These small denominators are the resonant values ωm =
m · ω that may lead to divergent series. It can be shown that the
set ωm for all integer vectors is, in general, dense everywhere
in phase space. Therefore, to find initial conditions “far from
a resonance” is not straight forward.

The geometric features of resonances in the action or integral
space are represented in Figs. 2 and 3. Any point on this plane
is a torus since the “position vector” is given by the three values
of the actions (or the integrals). In action space, the resonance
equation m · ω(J) = 0 leads to another 2-dimensional surface,
whose local normal at the resonant point J = Jr is

nr = (∂[m · ω(J)]/∂J)Jr . (20)

Further, the conservation of the unperturbed energy provides the
2-dimensional energy surface H0(J) = E. In what follows we
will consider only convex Hamiltonians, a condition that is ver-
ified by the Stäckel Hamiltonian. The subspace defined by the
intersection of both the resonant and the energy surfaces has di-
mension 1.

By definition, the frequency vectorω is normal to the energy
surface in the action space. The latter condition, together with
the resonance equation, shows that the resonant vector m lies in
the plane tangent to the energy surface at J = Jr Furthermore,
a simple inspection of the equations of motion for only one res-
onant perturbing term, that is εV = εVmg

(J) cos(mg · θ), shows
that J̇ is parallel to the resonant vector mg. This picture of the
dynamics allows us to conclude that the motion under a single
resonant perturbation proceeds on the tangent plane to the en-
ergy surface at the point J = Jr along the direction of the res-
onant vector. As ε → 0, the resonant perturbation preserves the
unperturbed energy.

The above discussion considering only one resonant term
shows that the perturbation (19) only depends on a single phase,
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namely the resonant phase mg · θ. If we perform a canonical
transformation in such a way that one of the three new phases,
say ψ1, is such that ψ1 = mg · θ, then the resulting Hamiltonian
will be cyclic in the remainding two phases ψ2, ψ3 and the new
momenta p2, p3 will be integrals of the motion.

This canonical transformation may be done through

ψi = µikθk; Ji = Jr
i + pkµki, (21)

where the sum over repeated indexes is understood and µik is
a 3 × 3 matrix. This linear transformation could be thought of as
a local change of basis where the new basis vectors are:

µ1 = mg, µ2 =
ω(Jr)
|ω(Jr)| , µ3 ≡ e (22)

the being latter normal to both µ2 and to nr . In general e will not
be normal to mg.

According to the discussion given by Chirikov (1979) and
Cincotta (2002), the Hamiltonian (18) and (19) in the vicinity
of a single resonant perturbation reduces to a simple pendulum
model:

Hr(p1, ψ1) ≈ H0(Jr) +
p2

1

2M
+ εVmg

(Jr) cosψ1, (23)

where Hr stands for the resonant Hamiltonian and M is the
“non-linear mass” given by: 1/M = mgi (∂ωi/∂Jk)Jr mgk. Thus
p1 changes with time following the pendulum model for a given
value of the integral Hr in the mg direction. The remaining mo-
menta pk, k = 2, 3 are set to zero so that Jr is a point of the
trajectory. Therefore, since Hr is independent of time, we again
have the full set of three (local) integrals of motion for the prob-
lem of a single resonant perturbation: Hr, p2, p3.

The variations of the unperturbed actions are determined by
the strength of the perturbation and the non-linear mass, in the
fashion (see Cincotta 2002 for further details)

(∆J)r ≡ |J − Jr | ∼
√
|Vmg

(Jr)M|ε. (24)

Thus, the resonant surface of the unperturbed system in action
space becomes a resonant layer, whose width is given by (∆J)r.

Since J−Jr ≡ p and in the new basis p = p1µ1+p2µ2+p3µ3
we note that p2 and p3 being local integrals, the motion pro-
ceeds from the resonant point in the direction of µ1, i.e. across
the resonance.

Cincotta (2002), following Chirikov (1979), discusses how
different terms in the pertrubation modify the dynamics of the
integrable system H0. For clarity we recast (18) and (19) as

H(J , θ) = H0(J) + εVmg
(J) cos (mg · θ)

+εVml (J) cos (ml · θ)+ε
∑

m�mg,ml

Vm(J) cos (m · θ). (25)

If we take into account all terms in (25), all momenta change
with time and then variations in p2 and p3 could occur, since now
the Hamiltonian depends on θ2 and θ3. These variations may
proceed along the µ2 and µ3 directions, and recalling that µ2 is
normal to the unpertrubed energy surface, the variations in p2
take into account small changes in the unperturbed energy when
the pertubation is switched on. These variations are bounded and
of order ε. However, µ3 is tangent to the energy surface and by
definition it is directed along the resonance, so one could expect
variations in p3 that, at first sight, will be unbounded (see next
section).

Fig. 4. The upper panel shows the resonances (1,−3, 2) and (3,−1,−1)
of Fig. 3 (reproduced in left panel), with their concomitant resonant and
stochastic layers.

Let us now discuss the effects of the different terms in (25).
As shown above, on taking Vm = 0 for all m � mg and picking
up initial conditions such that mg · ω(Jr) = 0, the torus struc-
ture in the vicinity of Jr is preserved because of the existence
of the three local integrals Hr, p2 and p3, Hr(p1, ψ1) being the
pendulum Hamiltonian. Depending on the value of Hr, the mo-
menta p1 will oscillate or rotate around Jr. The resonant layer
corresponds to the oscillation domain of the pendulum energy.
As it is well-known, oscilations and rotations in a pendulum are
separated by a smooth separatix ps

1(ψs
1).

If we switch on Vml , which we assume to be the dominant
non-resonant perturbing term, its main effect on the dynamics
of the system in the vicinity of Jr would be to split the stable
and unsable manifolds associated with the unstable points of the
pendulum leading to a splitting of separatices and the smooth
curve ps

1(ψs
1) becomes a stochastic layer of finite width. Thus,

under the effect of this perturvative term, oscillations and rota-
tions are actually separated by a layer of chaotic motion; p1(t)
shows a bounded unstable, chaotic behavior confined to this thin
layer. Figure 4 illustrates this fact for two given resonances in the
Stäckel model in the unperturbed integral space (H0, I2, I3) for
a fixed value of H0. There, the local basis {µ′1, µ′2, µ′3}, at a given
resonant torus Ir , has been included, the µ′i the µi at Jr being
mapped to the integral space.

If we turn on the next relevant term in (25), say Vmd , it is pos-
sible to show that this third term might cause unbounded chaotic
variations in p3 while p1 lies in the stochastic layer; there could
be motion in the µ3 direction, that is, along the stochastic layer
of the resonance.

Figure 5 illustrates in a schematical way how the whole res-
onant structure of the Stäckel model (given in Fig. 2) could be
distorted by the effect of a generic perturbation. All resonaces
would become layer, whose widths (∆J)r strongly depend on
Jr, m,Vm but all of them have order ε.

Geometrically, when the system is exactly at some reso-
nance, we have a 2D elliptical torus, while when the system is
on the border of the resonance we get a 2D hyperbolic torus.
Thus the center of a resonance layer over the integral space form
a chain of elliptical tori while the border of the resonace layer
corresponds to a chain of hyperbolic tori. This is schematically
shown in Fig. 6 for the same resonances of the Stäckel potential
depicted in Fig. 5.

All the orbits trapped in resonances constitute subfami-
lies of the Stäckel orbital families. As we discussed at the
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Fig. 5. Schematic representation of the effect of a perturbation on the
resonant structure of the Stäckel model (given in Fig. 2). All the reso-
nances become layers of width (∆J)r.

,

torus
 2D hyperbolic 

torus

.
.

2D elliptical

I

I 2
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Fig. 6. Geometric structure of the perturbed resonances shown in Fig. 5.
The central curve, that corresponds to the exact resonance is a chain
of 2D elliptical tori, while the borders of the resonance correspond to
a chain of 2D hyperbolic tori.

beginning of this section, if the system is far from any reso-
nance, the motion is stable. The presence of the perturbation only
produces small changes of order ε in the unperturbed actions.
Thus a non-resonant value of the unperturbed actions or inte-
grals leads to a 3D non-resonant torus that support quasiperiodic
orbits. Accordingly to Eqs. (7) and (8), the three local integrals
are H = H0+εV, I′2 = I2+εδI2, I′3 = I3+εδI3, δIi being bounded
constants. Therefore, in the neighbourhood of the values of the
unperturbed integrals (I2, I3) the orbital structure is preserved.

On the other hand, orbits trapped in a single resonance at Jr

also respect three local integrals that in action space are the pen-
dulum Hamiltonian Hr and two independent linear combinations
of the unperturbed actions at the resonant value, for instance,
K1 = a1Jr

1 + a2Jr
2, K3 = a3Jr

1 + a4Jr
3, where the coeficients ai

depend only on the µki. For Hr = 0 we are exactly on a 2D ellip-
tical torus that supports a stable resonant orbit that is the same
as in the unperturbed system (since p1 ≡ 0 and J = Jr). For

positive values of Hr new 3D tori appear that support nearly res-
onant orbits that respect the above mentioned local integrals. The
nature of these new orbits are different to that of the unperturbed
system at Jr. When Hr takes the value that corresponds to the
pendulum separatrix, we arrive at to the 2D hyperbolic tori that
support unstable orbits.

5. Discussion on the origin of chaos and diffusion

The dynamical description becomes highly intricate when we
consider the interaction among all the perturvative terms. Indeed,
as mentioned above, the effect of a perturbation on resonance is
to form a thin stochastic layer at the border of the resonance
layer. Since the resonace layer has a width ∼√ε, as long as the
perturbation increases its strength, the resonaces become wider
and the overlap of the stochastic layers of different resonances
coud take place when ε reaches some critical value εc. When
this occurs, the resonances overlap. The dynamics in this case
become unstable due to the intersections of the stable and un-
stable manifolds of different resonances. The resulting motion
is completely stochastic (see Cincotta 2002) whose main char-
acteristic is its local instability. Figure 5 provides a schematic
illustration of the effect of a perturbation on the resonant struc-
ture. From this figure. we can clearly see that if we increase the
perturbation, a massive overlap of resonaces will occur. Due to
the dimensionality of the system (3D), resonance intesections
take place (which is not the case in 2D systems). Around the
point of intersection, the stochastic layers of different resonaces
ovelap, as Fig. 5 shows schematically.

For the time being, an analytical description of the dynam-
ics at the resonance intersection is still lacking, because if we
retain two resonant terms in the expansion (25), for instance
Vmg

and Vml , the Hamilonian depends then on two resonant
phases (mg · θ) and (ml · θ), and as can be shown, this system is
not integrable. A picture of the dynamics at a resonance crossing
is given in Cincotta et al. (2003), where a zoom of the dynami-
cal behaviour at the region close to the intersection of two res-
onances with their corresponding stochastic layers is presented.
For this case, the intersection of these two resonances generates
a stable periodic orbit and a central region of regular or mild
chaotic motion bounded by a thin layer of unstable motion that
presents at the same time several stable domains separated by
extremely thin chaotic filaments. However, it is possible to in-
fer that at the intersection of the unperturbed resonances a peri-
odic orbit appears whose stability cannot be determined a priori
and that the zone of stochastic motion should be bounded (see
Chirikov 1979).

The kown mechanisms that lead to a transition from reg-
ularity to chaos are overlap of resonances (including resonace
crossings) and Arnold diffusion-like processes (see for instance,
Chirikov 1979; Cincotta 2002; Giordano & Cincotta 2004).

As we have already stated, chaos means variation of the un-
perturbed integrals. This is usually called chaotic diffusion in the
literature. Unfortunatelly no theory exists that describes global
diffusion in phase space. In other words, it is not possible to esti-
mate either its rate or its direction or route. Although one can ob-
tain accurate values of the Lyapunov exponents, the KS entropy,
the MEGNO (see Cincotta et al. 2003; Cincotta & Simó 2000)
or any other indicator of the stability of the motion, they provide
only local values of the diffusion rate. A given orbit in a chaotic
component of the phase space coud have two positive and
large values for the Lyapunov exponents which does not mean
that the unperturbed integrals would change much. This is a
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natural consequence of the structure of the phase space of al-
most all dynamcal systems like galaxies.

Thus what is actually relevant is the extent of the domain and
the time-scale over which the diffusion may occur. In a recent
work Giordano & Cincotta (2004) showed numerically that in
models similar to that of an elliptical galaxy, the time-scale over
which diffusion becomes relevant is several orders of magnitude
of the Hubble time. On the other hand, in models correspond-
ing to planetary or asteroid dynamics, diffusion may occur over
physical time-scales.

One can make predictions about the global dynamical be-
haviour of a perturbed system by studying its resonance struc-
ture. For example, in Fig. 2 we observe a rather intrincate res-
onance structure in the box orbits domain, with several crosses
of resonance as well as the fact that they are very close to each
other. Thus, we expect that this region would be dominated by
chaotic dynamics when the perturbation is actived, for instance
by adding a mass concentration in the center of the system, the
box domain in the I2I3-plane will be the first to be dominated by
chaos. This is also true for any other kind of integrable model
and perturbation, whatever its strengh at the center may be (see,
for instance Papaphilippou & Laskar 1998).

We could come to a similar conclusion for those regions
close to the separatrices which separate different families of
orbits, I2 = 0 and E = Veff(−β). Several resonance intersec-
tions along these separatices can be observed, then, when a non-
integrable perturbation is added, the dynamics in this region
would become rather intrincate due to the fact that the stable
and unstable manifolds of different 2D hyperbolic tori will tan-
gle in a very complicate fashion (see, for instance, Cincotta et al.
2003). This explains the instabilities found by de Zeeuw (1985)
along the I3-axis; in fact, in the Stäckel model all 2D tori with
I2 = 0 are unstable (hyperbolic), so that the dynamics in this re-
gion becomes rather chaotic under the effect of a non-integrable
perturbation.

An important fact to be stated is that when chaos sets up,
the unperturbed global integrals (or actions) have a discontinu-
ous dependence on phase space variables. Indeed, close to the
resonant torus, despite the existence of three local integrals, the
unperturbed orbital structure is not preserved and the topology
of the phase space changes. Moreover, on the stochastic layer at
least one integral does not exist.

Thus, in the Stäckel model, for ε = 0 we get Fig. 2, while
for ε 
 εc the dynamic picture will be similar to that given
in Fig. 5. Resonances do not present a significant overlap and
chaotic motion will be confined to the narrow stochastic lay-
ers and around the ressonance crossings. Thus we cannot ex-
pect large variations of the unperturbed integrals and therefore
chaotic diffusion should be irrelevant. However, theoretically, it
might be possible that chaotic diffusion takes place even for very
small values of the perturbation (ε 
 εc). Since for very small
ε values the resonance structure is still present, one could expect
that the perturbative terms drive diffusion along the stochastic
layers of a given resonance, i.e. in the µ′3 direction.

Indeed, Arnol’d (1964) proved for a very specific
Hamiltonian, that there exists a mechanism that could connect
two distant tori in the chain of 2D hyperbolic tori located on
the border of the resonance. This means that variations of the
unperturbed actions along the resonance occur. Since the actual
motion around any hyperbolic tori is stochastic, chaotic diffu-
sion along the stochastic layer of a given resonance could take
place. The mechanism that allows motion in the µ3 direction is
the so-called Arnol’d Mechanism (see Giorgilli 1990). However,
the existence of a transition chain of hyperbolic tori does not

mean that stochastic motion would spread over the whole web
of resonances. Moreover, in general, it is not possible to find this
transition chain in most non-linear Hailtonian systems, even in
the case of the simpler ones. Nevertheless, it is often assumed
that this is the case and that chaotic motion will take place over
the whole resonance web. This implies that a global instabil-
ity exists and it is usually called Arnol’d diffusion. This conjec-
ture supports, for instance, concepts like mixing or ergodicity,
among others. Let us recall that the global instability properties
of near integrable Hamiltonian systems are far from being well-
understood after the pioneering work of Arnol’d (see Lochak
1999).

For ε � εc, the overlap of resonances begins to operate de-
stroying the torus structure of phase space and the resonance
web disappears, and chaotic diffusion begins. In this case, we ex-
pect that diffusion could operate through overlap of resonances,
but the extent of the diffusive zone will be confined, at most, to
the overlapping domain. There is no guarantee that the whole
chaotic component of phase space is connected, even in the case
of massive overlap (Giordano & Cincotta 2004). But also in this
case, it is usually stated that the chaotic component of phase
space is fully connected through Arnol’d diffusion. Arguments
based on these yet unproved statements have given rise to many
of the current ideas taken for granted on dynamics in elliptical
galaxies, as can be verified for instance in the works of Merritt
& Valluri (1996), Merritt (1999) and Udy & Penniger (1988)
among others.

Therefore, in a theoretical approach, while it is posible to get
much information about the dynamical behaviour of the system
as long as the perturbation increases its strength, nothing can be
concluded about the diffusive processes in phase space of near-
integrable systems. Numerical integrations become the only way
to investigate if chaotic diffusion could play a significant role in
particular models of galaxies. This will be addressed in a forth-
coming paper using the Stäckel potential discussed here.

We clearly discriminate the dynamical behaviour of the
system depending on the values of the integrals. Close to
strong non-resonant tori, the orbital structure of the unperturbed
Stäckel potential is preserved and the local integrals are correc-
tions of order ε of the unperturbed global integrals. On the other
hand, when the system is close to a resonant tori, the unperturbed
orbital structure is not preserved, new local integrals appear and
the topology of phase space changes. These new local integrals
are the pendulum Hamiltonan and linear combinations of the un-
perturbed actions at the resonant point.

Therefore, in such a system, it is not possible to assume
that the distribution function of the galaxy, in the whole regu-
lar component, has the form f (I2, I3). This could be true only
for strong non-resonant tori, but since resonances are dense
in phase space, the distribution function locally exists and has
the form fn(H, I2, I3) + εg(H, I2, I3) in neighbourhood of non-
resonant tori that support quasiperiodic orbits and fr(Hr,K2,K3)
in vicinity of resonant tori.

On the other hand, nothing can be said about the dependence
of f in the chaotic region. In a similar fashion, since there is
no theoretical support to argue that the whole chaotic region is
fully connected, one should define a local distribution function
only in those regions of phase space that could be visited by
a single orbit. It is very likely that in some regions two local
quasi-invariants exist (for example in the stochastic layers of the
resonances) and in some other regions only the energy remains
constant. Clearly, discontinuous dependence of f on the inte-
grals, and consequently on phase space variables, is expected.
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On the other hand, much progress can be made in the
understanding of diffusive processes in phase space of near-
integrable Hamiltonian systems, including the dynamical be-
haviour around resonance crossings. Indeed, as all the evidence
shows, galaxies should exhibit a divided phase space, with
both regular and chaotic components, which is the phase space
structure of near-integrable Hamiltonians for low-to-moderate
perturbations.

Taking into account these arguments that are supported
by theoretical considerations, we suggest that the direc-
tion to take in constructing equilibrium models of elliptical
galaxies.

The selected representation of an elliptical galaxy does not
encompass the case of a central singularity. In such a case, one
deals with a non-analytic perturbation which admits no Fourier
expansion as (18) and the perturbative approach is no longer suit-
able. Nevertheless, it is clear that such a peturbation∼1/r mainly
affects the dynamics in the box domain due to the fact that these
orbits pass arbitrarily close to the center: box orbits are strongly
scattered producing in general an almost spherical configuration
near the center (see however Poon & Merritt 2002). Therefore,
the perturbative approach addressed here should be reformulated
so that a singularity at the origin can be taken into account. This
is not a simple task. Although there is observational evidence of
central mass concentrations in elliptical galaxies that could be
black holes (see for instance Ferrarese & Ford 2005), the ques-
tion of whether they actually are supermassive black holes is still
an open matter.

Due to the fact that the described perturbative approach suc-
ceeds in studying actual physical problems such as planetary and
asteroidal systems or dynamics in particle accelerators as well
as the motion of charged particles in magnetic bottles, we argue
that the theoretical formulation discussed here, which the only
one developed so far, is a fairly useful tool when dealing with
galactic systems.

Although one may argue that the action-angular variables
do not constitute an adequate set to yield a description of
galatic systems, there exists numerical evidence of galatic
models exhibiting large regions of phase space corresponding
to regular motion. Therefore, the Hamiltonian of a star moving
in a galactic potential can always be writen in the fashion
H(J) = H0(J) + εV(J , θ), the key point being what should be
considered as V(J , θ). Since all these mathematical theories have
served well to provide a thorough description of chaotic systems,
they may be of use to yield a good first order approximation of
the motion of a star in a smooth stationary potential. Moreover,

despite the fact that the actual dynamics of a galactic system
comes from numerical simulations, theory that permits us to elu-
cidate the matter, at least in an heuristic way is still useful.
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