220 research outputs found

    Effects of hydrostatic pressure on the magnetic susceptibility of ruthenium oxide Sr3Ru2O7: Evidence for pressure-enhanced antiferromagnetic instability

    Full text link
    Hydrostatic pressure effects on the temperature- and magnetic field dependencies of the in-plane and out-of-plane magnetization of the bi-layered perovskite Sr3Ru2O7 have been studied by SQUID magnetometer measurements under a hydrostatic helium-gas pressure. The anomalously enhanced low-temperature value of the paramagnetic susceptibility has been found to systematically decrease with increasing pressure. The effect is accompanied by an increase of the temperature Tmax of a pronounced peak of susceptibility. Thus, magnetization measurements under hydrostatic pressure reveal that the lattice contraction in the structure of Sr3Ru2O7 promotes antiferromagnetism and not ferromagnetism, contrary to the previous beliefs. The effects can be explained by the enhancement of the inter-bi-layer antiferromagnetic spin coupling, driven by the shortening of the superexchange path, and suppression, due to the band-broadening effect, of competing itinerant ferromagnetic correlations.Comment: 11 pages, 4 figure

    Micro-scale to nano-scale generators for energy harvesting:Self powered piezoelectric, triboelectric and hybrid devices

    Get PDF
    This comprehensive review focuses on recent advances in energy harvesting of micro-scale and nano-scale generators based on piezoelectric and triboelectric effects. The development of flexible and hybrid devices for a variety of energy harvesting applications are systematically reviewed. A fundamental understanding of the important parameters that determine the performance of piezoelectric, triboelectric and hybrid devices are summarized. Current research directions being explored and the emerging factors to improve harvester functionality and advance progress in achieving high performance and durable energy conversion are provided. Investigations with regard to integrating flexible matrices and optimizing the composition of the piezoelectric and triboelectric materials are examined to enhance device performance and improve cost-effectiveness for the commercial arena. Finally, future research trends, emerging device structures and novel materials in view of imminent developments and harvesting applications are presented.</p

    CP--violating Chargino Contributions to the Higgs Coupling to Photon Pairs in the Decoupling Regime of Higgs Sector

    Full text link
    In most supersymmetric theories, charginos χ~1,2±\tilde{\chi}^\pm_{1,2} belong to the class of the lightest supersymmetric particles and the couplings of Higgs bosons to charginos are in general complex so that the CP--violating chargino contributions to the loop--induced coupling of the lightest Higgs boson to photon pairs can be sizable even in the decoupling limit of large pseudoscalar mass mAm_A with only the lightest Higgs boson kinematically accessible at future high energy colliders. We introduce a specific benchmark scenario of CP violation consistent with the electric dipole moment constraints and with a commonly accepted baryogenesis mechanism in the minimal supersymmetric Standard Model. Based on the benchmark scenario of CP violation, we demonstrate that the fusion of the lightest Higgs boson in linearly polarized photon--photon collisions can allow us to confirm the existence of the CP--violating chargino contributions {\it even in the decoupling regime of the Higgs sector} for nearly degenerate SU(2) gaugino and higgsino mass parameters of about the electroweak scale.Comment: 1+13 pages, 3 eps figure

    QCD Sum Rules and Applications to Nuclear Physics

    Full text link
    Applications of QCD sum-rule methods to the physics of nuclei are reviewed, with an emphasis on calculations of baryon self-energies in infinite nuclear matter. The sum-rule approach relates spectral properties of hadrons propagating in the finite-density medium, such as optical potentials for quasinucleons, to matrix elements of QCD composite operators (condensates). The vacuum formalism for QCD sum rules is generalized to finite density, and the strategy and implementation of the approach is discussed. Predictions for baryon self-energies are compared to those suggested by relativistic nuclear physics phenomenology. Sum rules for vector mesons in dense nuclear matter are also considered.Comment: 92 pages, ReVTeX, 9 figures can be obtained upon request (to Xuemin Jin

    MSSM Higgs sector CP violation at photon colliders: Revisited

    Full text link
    We present a comprehensive analysis on the MSSM Higgs sector CP violation at photon colliders including the chargino contributions as well as the contributions of other charged particles. The chargino loop contributions can be important for the would-be CP odd Higgs production at photon colliders. Polarization asymmetries are indispensable in determining the CP properties of neutral Higgs bosons.Comment: 24 pages, 40 figure

    Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands.

    Get PDF
    Alloimmune T cell responses induce graft-versus-host disease (GVHD), a serious complication of allogeneic bone marrow transplantation (allo-BMT). Although Notch signaling mediated by Delta-like 1/4 (DLL1/4) Notch ligands has emerged as a major regulator of GVHD pathogenesis, little is known about the timing of essential Notch signals and the cellular source of Notch ligands after allo-BMT. Here, we have shown that critical DLL1/4-mediated Notch signals are delivered to donor T cells during a short 48-hour window after transplantation in a mouse allo-BMT model. Stromal, but not hematopoietic, cells were the essential source of Notch ligands during in vivo priming of alloreactive T cells. GVHD could be prevented by selective inactivation of Dll1 and Dll4 in subsets of fibroblastic stromal cells that were derived from chemokine Ccl19-expressing host cells, including fibroblastic reticular cells and follicular dendritic cells. However, neither T cell recruitment into secondary lymphoid organs nor initial T cell activation was affected by Dll1/4 loss. Thus, we have uncovered a pathogenic function for fibroblastic stromal cells in alloimmune reactivity that can be dissociated from their homeostatic functions. Our results reveal what we believe to be a previously unrecognized Notch-mediated immunopathogenic role for stromal cell niches in secondary lymphoid organs after allo-BMT and define a framework of early cellular and molecular interactions that regulate T cell alloimmunity

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Search for charged Higgs bosons in top quark decays

    Full text link
    We present a search for charged Higgs bosons in top quark decays. We analyze the \eplus, \muplus, eeee, eμe\mu, μμ\mu\mu, \etau and \mutau final states from top quark pair production events, using data from about 1fb1{\text{fb}}^{-1} of integrated luminosity recorded by the \dzero experiment at the Fermilab Tevatron Collider. We consider different scenarios of possible charged Higgs boson decays, one where the charged Higgs boson decays purely hadronically into a charm and a strange quark, another where it decays into a τ\tau lepton and a τ\tau neutrino and a third one where both decays appear. We extract limits on the branching ratio B(tH+b)B(t\to H^+ b) for all these models. We use two methods, one where the ttˉt\bar{t} production cross section is fixed, and one where the cross section is fitted simultaneously with B(tH+b)B(t\to H^+b). Based on the extracted limits, we exclude regions in the charged Higgs boson mass and tanβ\tan \beta parameter space for different scenarios of the minimal supersymmetric standard model.Comment: 10 pages, 8 figures, submitted to PL
    corecore