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Abstract 

This comprehensive review focuses on recent advances in energy harvesting of 

micro-scale and nano-scale generators based on piezoelectric and triboelectric effects. The 

development of flexible and hybrid devices for a variety of energy harvesting applications are 

systematically reviewed. A fundamental understanding of the important parameters that 

determine the performance of piezoelectric, triboelectric and hybrid devices are 

summarized. Current research directions being explored, and the emerging factors to improve 

harvester functionality and advance progress in achieving high performance and durable 

energy conversion are provided. Investigations with regard to integrating flexible matrices 

and optimizing the composition of the piezoelectric and triboelectric materials are examined 

to enhance device performance and improve cost-effectiveness for the commercial arena. 

Finally, future research trends, emerging device structures and novel materials in view of 

imminent developments and harvesting applications are presented. 

Keywords: micro generator, nanogenerator, piezoelectric, triboelectric, energy harvesting, 

blue energy.  
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1. Introduction 

There are a variety of ambient energy sources in the environment, including 

mechanical, thermal, chemical, electromagnetic and solar energy, which have a wide range of 

energy densities. As the size and power consumption of electronic devices continues to shrink, 

harvesting energy from the surrounding environment to power such systems is a promising 

approach to provide autonomous devices. In this context, a wide range of energy harvesting 

materials and mechanisms has been considered thanks to the initial discovery of 

piezoelectricity. The development of nanostructured piezoelectric materials, however, is a 

relatively recent development, and the understanding of nanoscale effects on ferroelectric and 

piezoelectric properties continues to be formulated, along with novel fabrication methods and 

new applications [1-3].  

Mechanical energy, in contrast to a number of other energy sources, is almost 

ubiquitously available. However, the frequency and amplitude of the mechanical vibrations in 

the environment is often highly variable [4]. Therefore, it is essential to find appropriate 

energy harvesting methodologies that have a tolerance for variable environments; this is in 

contrast to traditional cantilever based resonators [5, 6] based on a fixed frequency electrical 

generator [7]. In 2001, Glynne-Jones et al. [8] proposed a “piezoelectric vibration-powered 

microgenerator”, and in 2006 a new ZnO piezoelectric nanogenerator (PENG) 

technology was advanced by Z. L. Wang et al. [9]. The PENG converts random mechanical 

energy into electric energy and has the potential to operate in a wide frequency and motion 

range. Piezoelectric nanomaterials such as ZnO, BaTiO3, and lead zirconate titanate (PZT), 

have the ability to transform mechanical energy to electrical energy, and vice versa. ZnO 

nanostructures have attracted attention as functional elements for nanogenerators, due to their 
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advantages such as high transparency, lead-free chemical composition, ease of nanostructure 

design, chemical stability, and potential for exploiting their combination of semiconducting 

and piezoelectric properties [10-13]. After the first nanogenerator (NG) was demonstrated in 

2006 [9], numerous designs with a variety of nanostructures and architectures have been 

reported for the efficient conversion of mechanical energy into electric energy, principally by 

the use of either piezoelectric [14] and triboelectric effects [15-17]. 

More recently, nanogenerators with an additional function of mechanical flexibility 

have been developed that are promising in offering energy generation solutions for compliant 

and stretchable electronics, [12, 18-21] whereby the flexible nanogenerators consist of 

piezoelectric nanowire or nanorod arrays that are sandwiched between two electrodes formed 

on flexible substrates. Flexible electronic devices are attracting significant attention because 

of their promising applications in several research areas, such as bendable LED displays [22-

25], self-powered wearable electronics [26-30] and artificial skins [31-34], although progress 

is somewhat limited due to the need to also simultaneously develop flexible power storage 

and delivery systems [28]. Such flexible devices must have the ability to bend, fold, twist, 

and stretch, and provide harvested mechanical energy, while also maintaining their electronic 

and structural integrity across a relatively harsh working environment. To date, significant 

research effort has been devoted to improving the performance of flexible nanogenerator 

devices in order to broaden their range of potential applications and operating conditions [12, 

28, 35].  

The functioning mechanism of piezoelectric nanogenerators can be generally 

described as a transient flow of electrons driven by a piezoelectric potential [36, 37]. 

Piezoelectric materials have non-centrosymmetric crystal structures and their centers of 
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positive charge and negative charge are under mechanical stress, as shown in Fig. 1. As 

piezoelectricity arises from the arrangement of the crystal structure, these materials can be 

slightly reduced in size and assimilated into nanoscale devices whilst retaining their 

functional properties. Recently, both rigid and flexible nanogenerators have been constructed 

from one-dimensional piezoelectric and/or ferroelectric nanostructures [37]; these include 

wurtzite ZnO thin films [38], perovskite lead zirconate titanate (PZT) nanofibers [39], 

BaTiO3[40], InN nanowires[41-43], NaNbO3[44], ZnSnO3 microbelts [45, 46], CdTe [47], 

CdS [48, 49], ZnS [50, 51], GaN nanowires [52, 53] and polymers based on PVDF [54], 

along with composite systems. When the piezoelectric structures are distorted via a 

mechanical load, such as a human motion, acoustic waves, wind, or machine vibration, the 

process of charge separation develops a piezoelectric potential that induces an electric current 

for driving low power electronics. One of the primary applications for nanogenerators is self-

powered systems, which harvest energy from the working environment and convert it into 

electricity to achieve maintenance-free and autonomous operation of a system. In addition, 

the harvesting materials can also act as a sensor element, whereby an electrical signal is 

generated[55] when activated by a mechanical or thermal excitation.  

This review provides an emphasis on recent developments on manufacturing 

methods, applications and advancements of self-powered energy harvesting systems, which 

includes piezoelectric nanogenerators (PENGs), triboelectric nanogenerators (TENG) and 

flexible hybrid nanogenerators (FHNGs). The wide-ranging applications of these 

nanogenerators are described. Finally, perspectives of future directions for the technology of 

energy harvesting nanogenerators are discussed.  

2. Pre-2006: Piezoelectric micro-generators 
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The piezoelectric material chosen for an energy harvesting application can have a 

major impact on the harvesting device functionality and performance. To date, a number of 

piezoelectric materials have been developed for micro-scale and nano-scale generator 

applications. The early and most common type of piezoelectric used in energy harvesting is 

lead zirconate titanate (PZT), which is a ferroelectric ceramic. Although PZT has been widely 

used as a harvesting material since the early 21st century, the brittle nature of the material 

limits the maximum strain that can be achieved without fracture. Images of traditional 

bimorph and unimorph structures used to create piezoelectric energy harvesters are shown in 

Fig. 2(a). Kong et al. [56] introduced atomic force microscopy (AFM) as a tool for surface 

mapping features with a resolution of less than 10 nm, as shown in Fig. 2 (b), and we will see 

later in this review that this is an important tool for characterizing piezoelectric nanowires 

and nanorods. This method provides the possibility of incorporating both electronic drive and 

sensing circuitry into the microprobe for multichannel AFM systems for piezoelectric 

measurements at the nanoscale. In 1999, Beach et al. [57] deduced the piezoelectric field and 

charge distribution for numerous III-nitride hetero-structures, as shown in Fig. 2 (c). Their 

findings included the impact of doping effects and strain energy minimization 

for piezoelectric effects in strained layers. Later, the structure and micro-fabrication of a 

novel micro-scanning force microscopy (SFM) device were advanced by Chu et al. [58], 

which is presented in Fig. 2(d).  

Likewise, piezoelectric-fiber based energy harvesting materials were also 

investigated by Churchill et al. (2003) [59] who examined composites based on unidirectional 

aligned PZT fibers of 250 µm diameter embedded in a resin matrix. When a 0.38 mm thick 

sample of 130 mm length and 13 mm width was subjected to a 180 Hz vibration at a strain 
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level of 300 με, the composite could harvest ~7.5 mW of power. The results of this study 

show that a relatively small fiber-based piezoelectric power harvester could generate 

sufficient power for wireless transmission. Finally, the single bridge piezoelectric 

device exhibited sensitivities of 0.32 nA/nm and 70-80 nm/V in a vertical direction and a 

lateral direction respectively. Moreover, Mohammadi et al. [60] fabricated PZT fibers of 

different diameters (15, 45, 120, and 250 µm) that were aligned, laminated, and molded into 

an epoxy. This led to flexible composites with 40 vol.% of aligned piezoelectric fibers. A 

number of samples were made in which several 34 mm × 11 mm rectangular plates of a range 

of thicknesses (1.2-5.8 mm) were diced to form a composite with fibers oriented in the plate 

thickness direction. The output voltage of the composites was determined by dropping a 

33.5 g weight on them from a height of 10 cm. A maximum voltage of 350 V and output 

power of 120 mW was produced for the thickest transducer, 5.85 mm thick, with the smallest 

fiber diameter of 15 µm and it was determined that thicker plates had the ability to achieve 

larger fiber displacements, and that samples with smaller diameter fibers had the highest 

piezoelectric coefficient (d33) and lowest dielectric constant, both of which contributed 

towards the composite achieving greater power outputs and higher efficiency systems. 

 In 2005, Lee et al. [61] reported on the susceptibility of piezoelectric ceramics to 

fatigue crack growth when exposed to high frequency cyclic loading, which indicates a 

potential limitation of the materials for high strain/bending applications. In order to eliminate 

these disadvantages of piezoelectric ceramic materials and increase their efficiency, 

researchers have developed more flexible piezoelectric materials that can be used in energy 

harvesting applications [62]. For example, Mossi et al. (2005) [63] created a unimorph pre-

stressed bender. This is an initially curved, arc-shaped, rectangular piezoelectric device that 

http://iopscience.iop.org/article/10.1088/0964-1726/16/3/R01/meta#sms232581bib51
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stretches when a force is applied to the top of the arc. Elongation of the device results in a 

strain in the active material, which creates a potential difference across the device. The device 

was simply supported, allowing for movement in the lateral direction. While these devices 

were typically used as actuators, Kymissis et al. (1998) [64] and Yoon et al. (2005) [65] 

revealed that they were also capable of generating useable energy as harvesters. The 

properties of the pre-stressed devices with varying different physical parameters were 

detailed in their study [64, 65] and it was reported that larger dome heights lead to larger 

strains and energy generation when the harvester was compressed; therefore, the thickness 

and type of the metal used to create the dome can affect the power harvesting performance of 

the device and should be optimized. In addition, the power harvesting capability of the device 

was increased by increasing the electrical conductivity of the adhesive layer between the 

passive metal layer and the piezoelectric material. This was achieved by the addition of 

metallic particles of nickel to the adhesive, which led to a 15% increase in the harvested 

energy. Danak et al. (2003) [66] also examined a method to enhance the energy harvesting 

performance of an initially curved PZT unimorph. A model was developed that predicted the 

relationship between generated charge and initial dome height, substrate thickness, PZT 

thickness, substrate stiffness and the power output of the device. It was identified that 

increasing the dome height offered the greatest increase in charge output and increasing the 

substrate and PZT thickness both lead to a higher charge output. However, increasing the 

substrate thickness had a greater influence compared to increasing the thickness of PZT; 

increasing the stiffness of the substrate could also generate more piezoelectric charge. 

3. Post 2006: Piezoelectric nanogenerators 

After 2007, there was significant attention on using one-dimensional (1D) 
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piezoelectric nanostructures (PZT, BaTiO3, ZnO, PVDF, CdS, GaN, etc.) for mechanical 

energy harvesting [67, 68]. Lin et al. (2013) [19] reported on the high output power density of 

their prototypes of ~5.3 mW cm-2. Moreover it was identified that, due to substrate coupling 

effects, piezoelectric thin films may exhibit reduced piezoelectric coefficients [69, 70].  

One dimensional (1D) nanomaterials, such as nanorods (NRs) and nanowires (NWs), 

are usually defined as having a length more than ~ 1 μm with a diameter less than 

100 nm[71] and tend to be in single crystal form [72]; typically NRs have a lower aspect ratio 

than NWs[73]. Using piezoelectric 1D nanomaterials for mechanical energy harvesting is 

reported to have three benefits [68]: (i) when a strain gradient is experienced by a 

ferroelectric with a thickness of a few tens of nanometers, it exhibits ~ 400-500% improved 

piezoelectric effects as a result of flexoelectric effects due to the presence of a strain gradient; 

(ii) the lattice perfection of 1D materials provides improved mechanical properties that leads 

to superior critical strain, greater flexibility, and extended operational lifetime, and (iii) 1D 

materials exhibit high sensitivity to a small force due to the small thickness and large aspect 

ratio that allows the formation of significant strain in nanowires under a mechanical load at 

the nano- or pico-Newton level. When a piezoelectric nanowire is deflected, an electric 

potential can be produced on the side surfaces due to distortion of the crystal lattice. For ZnO 

based NWs, the surface under tension provides a positive potential while a negative potential 

is generated on the surface under compression. In 2007, Gao and Wang [38] reported 

calculations of the potential distribution in a ZnO NW and stated the NW acted as a parallel 

plate capacitor. A ZnO NW with a diameter of 50 nm, a length of 600 nm, was bent by 

145 nm at the tip by an 80 nN lateral force. Numerical modeling indicated that the maximum 

piezoelectric potential at the NW surface was directly proportional to the lateral displacement 
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of the NW and inversely proportional to the length-to-diameter aspect ratio of the ZnO NW. 

Initial investigations of the piezoelectric effect in NRs were obtained by straining a 

single nanorod with a conductive atomic-force microscope (AFM). In 2006, the first study by 

Wang and Song [9] used nanorods of ZnO grown on a sapphire substrate via a vapor-liquid 

solid (VLS) method. This led to gold particles being left behind on the tip of each rod after 

catalyzing their growth, which provided a good electrical contact between the conductive 

AFM tip and the tip of the nanorod. Wang and Song hypothesized [68] that the Schottky 

barrier, namely the electronic potential energy barrier at a metal-semiconductor interface, 

formed between the ZnO and gold was important in producing a quantifiable output voltage, 

which was ~ 10 mV. They suggested that the stretched side of the rod had a positive potential, 

leading to a reverse bias with the Schottky junction so that no current might flow to screen 

the polarization [68]. On the compressed and negatively polarized side of the rod, the 

junction was forward biased and thus current can flow to screen the polarization. This means 

that the metal–ZnO contact creates a Schottky barrier that ensures the charge recuperation for 

piezoelectric charge-generation. Thus, Schottky contacts among the metal and ZnO is a key 

factor to the generation of current by NG’s. An investigation of the piezoelectric output from 

individual ZnO nanorods was undertaken by straining a nanorod within a TEM so that the 

electrical output and structural changes could be directly inspected [1, 74, 75]. Such work 

offered more reliable results, compared to AFM, as the nanorod is physically bonded to the 

electrodes. However, careful use of the measurement method is still required, as the reported 

current generation under static strain is not possible from the piezoelectric effect, and implies 

that a small bias is present in the measurement system [76]. The reader is referred to the 

following papers for further discussion of the measurement system [14, 77]. 
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To support the experimental investigations of the piezoelectric output from strained 

nanorods, several theoretical models have been developed [21, 38]. For instance, Gao et al. 

[38] calculated the potential difference that would be produced across a bent nanorod. 

However, this neglected the impact of free carriers in ZnO, which were important in 

determining its overall effective piezoelectric properties, and was later added to the model by 

the same research group [21], which confirmed that the free carriers lead to a non-

symmetrical distribution of potential. Numerous advanced investigations of nanogenerators 

have included computational models of a strained nanorod, which often generated similar 

asymmetric distributions. 

Recently, an integrated nanogenerator based on vertically aligned ZnO NWs has been 

reported. The peak open-circuit voltage and short-circuit current were ~ 37 V and ~ 12 μA, 

respectively, from a 1 cm2 nanogenerator [78]. The same research group also reported 

vertically aligned NW ZnO arrays that were sandwiched between two metal electrodes, as 

shown in Fig. 3(a). Solidified PMMA was used to encapsulate the ZnO NWs and prevented 

them from making close contact with the top metal electrode [79]. The mechanism of the 

nanogenerator operation depended on the piezoelectric potential created in the ZnO NWs 

from an external strain [80]; dynamic straining of the NW exhibited a transient flow of 

electrons in the external load because of the driving force of the piezo-potential. The 

proposed benefit of using NWs was that they could be triggered by small physical motions 

and the excitation frequency can be a few Hz to several MHz, which is useful for random 

energy harvesting in the environment such as from small vibrations, body motion, and air 

flow which are typically low frequency. 

3.1 Recent advancements in fabrication of piezoelectric nanogenerators  
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Several methods have been used to fabricate piezoelectric nanogenerators. In 2013, 

Suo Bai et al. [81] reported on the fabrication of 2D woven nanogenerators. During the 

assembly process, two types of fiber were woven together on the surface of a wooden block 

and slider, which served as a substrate. This approach imitated the woven structure of a 

textile and was composed of two kinds of fibers crossing each other, one type of fibers were 

ZnO nanowires and the other type of fibers were ZnO NWs coated with palladium (Pd) on 

their surface. Depending on the coupling of the piezoelectric and semiconducting properties 

of ZnO, it was possible to generate electricity from small external mechanical forces, such as 

wind and sound. The open-circuit voltage and short-circuit current of the woven NG were 

3 mV and 17 pA, respectively. Moreover, the woven NG was used to power a microfiber/ZnO 

NWs hybrid UV sensor to form a wearable self-powered system, which could quantitatively 

sense UV light intensity [82]. 

The chemical vapor-phase growth method provided good electrode contact by 

leaving Au particles on the tips of the nanowires [83]; however, this was not well-matched to 

operation with plastic substrates which were preferred for low-cost and flexible energy 

harvesters [84, 85]. As a result, this technique was superseded by using a 

hexamethylenetetramine-zinc nitrate growth method where a seeded substrate was employed 

in an equimolar (0.01-0.1 M) mixture, and heated to 90 °C for 4 h to grow aligned ZnO 

nanorods on the substrate surface [86]. Later, this method became the dominant technique for 

ZnO nanorod growth, and was used in the majority of ZnO nanogenerators [87, 88]. The 

approach was first validated for nanogenerator fabrication soon after the original report of the 

growth of ZnO nanorod arrays on polyimide substrates, such as Kapton. In this study, the 

nanorods were mechanically stabilized by spin-coating a poly(methyl methacrylate) (PMMA) 
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solution between the nanorods, a method that became common in later devices [89].  

Wang et al. [11, 68] fabricated the first prototype nanogenerator using a Pt-coated 

serrated electrode with vertically aligned ZnO NWs that were able to convert ultrasonic 

waves into electricity. The aligned ZnO NWs arrays were covered by a serrated silicon 

electrode coated with platinum, which were reported to enhance electrode conductivity and 

formed a Schottky contact at the interface with ZnO NWs. The ZnO NWs were grown on 

GaN substrates and the top electrode was composed of parallel serrated trenches fabricated 

on a (001) plane silicon wafer and coated with a thin layer of Pt. Some NWs were in direct 

contact with the top electrode, but some were positioned between the teeth of the electrode. 

Under the application of ultrasonic waves, the top electrode moved downward onto the ZnO 

NW, thereby leading to a lateral bending. The bending-induced piezoelectric potential was 

collected through the Pt film when the Schottky junction between the NW and Pt electrode 

was forward biased. 

Recently, a number of devices have been fabricated using ‘zig-zag’ types electrodes, 

including those designed with gold-coated ZnO nanorods [90] . This pattern allowed the 

nanorods to be strained whilst fixed to a rigid substrate; this was particularly useful before 

flexible substrates became more common. In addition, other fabrication methods were also 

demonstrated to enable strain of piezoelectric arrays on rigid substrates [91]. By in-filling the 

nanorods with a polymer, such as PMMA, and exposing their surface using oxygen plasma 

etching, devices were made that converted compressive loads into electricity. The open-

circuit voltage of these devices was ~ 80-100 mV with a short-circuit current density of 4-

9 nA cm−2. Later, the voltage generation was increased to over 300 mV by leaving ~1 μm of 

PMMA on top of the nanorods before coating with a gold electrode. This was developed into 
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a device consisting of a ZnO array on silicon. When compressed with a linear motor, the 

device produced an open-circuit voltage of ~ 37 V after rectification through a bridge rectifier, 

and a higher short-circuit current density of 12 μA cm−2. By connecting a number of 

nanogenerators in parallel, the authors were able to use the output to charge a capacitor to 

store the harvested energy, which will be discussed below in terms of the applications of 

nanogenerators. 

In addition to efforts on ZnO nanorods, PZT-based nanorods have been fabricated 

using hydrothermal methods [92] by heating aqueous chemical precursors in a pressure vessel 

at 230 °C for 12 h on epitaxially-matched doped strontium titanate substrates. The Ti/Pt upper 

electrodes on silicon were pressed onto the top surface through which pressure was applied to 

produce voltage peaks of ~ 0.7 V and a current density of ~ 4 µA cm−2. The PZT nanofibers 

[39], with a diameter and length of ~ 60 nm and 500 μm on a silicon substrate, produced an 

output voltage of approximately 1.63 V and the generated power under a periodic stress was 

0.03 μW, as shown in Fig. 4(a). In addition to PZT [92], barium titanate (BaTiO3) is 

increasingly being used for energy harvesting and in 2014, Zhou and Sodano [93] developed 

an energy harvesting device using 1 μm long and 90 nm wide BaTiO3 nanorods that were 

produced using a two-step hydrothermal procedure, whereby hydrothermally grown TiO2 

nanorods on a conductive fluorine-doped tin oxide (FTO) substrate were submerged in a Ba2+ 

solution to convert them to BaTiO3, as shown in Fig. 4(b). The nanogenerator devices were 

vibrated using a shaker table at 1g (9.8 m s−2), achieving a peak-to-peak open-circuit voltage 

of ~ 623 mV, and a short-circuit current density of ~ 9 nA cm−2 with a power density of 

6.27 μW cm−3 with a 120 MΩ resistive load. This was compared to ZnO nanorod-based 

devices tested, which produced 85 mV, 1.58 nA cm−2 and 0.4 μW cm−3 on a 50 MΩ load. The 
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BaTiO3 devices produced around 16 times more power than the ZnO rod-based device, which 

was credited to the higher electromechanical coupling coefficients of BaTiO3 compared to 

ZnO, signifying the potential for BaTiO3 as a lead-free piezoelectric alternative to PZT. 

Recently a facile, lightweight, flexible, and cost-effective Er3+- and Fe3+-ion-doped 

PVDF-based piezoelectric nanogenerators (PENGs) were prepared via a simple solution 

casting method [94]. The established PENGs exhibited excellent energy-harvesting 

performance with a power density of ∼160mW cm-3 and ∼55.34 mW cm-3 under periodic 

finger loading of the Er3+- and Fe3+-stimulated PVDF-film-based energy-harvesting arrays, 

respectively. The prepared self-powered PENG was also able to light up 54 commercially 

available light-emitting diodes. 

3.2 Future prospects for piezoelectric nanogenerators 

Piezoelectric nanogenerators have been intensively studied in order to increase the 

energy conversion efficiency and the power density of active materials. Studying the impact 

of nanowire and/or nanorod-metal Schottky contact on the energy harvesting properties is of 

importance to understand the overall improvement of the nanogenerator device performance. 

In this aspect, recent studies of nanostructured materials for energy harvesting, such as GaN 

nanowires, have also been undertaken [95], as shown in Fig. 3(b). This demonstrated the 

impact of the GaN nanowire-Schottky metal nano-contact on the energy harvesting efficiency 

and three different metal nano-contacts of diamond, PtSi and Pt/Ir, were examined. Finally, 

the nanogenerator with platinum-based Schottky nano-contact produced a high piezoelectric 

energy and this was ~2.4 times higher than that of diamond-based contact.  

By using piezoelectric materials, various types of energy harvesting devices have 

been explored, as highlighted thus far, with the aim to realize self-powered electronic devices 
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such as mobile electronics and implanted medical devices. However, there are some 

challenges to be overcome for their use in these applications. Firstly, the output power of the 

piezoelectric energy harvesters is often low, i.e. between 1-5 µW, as seen from the power 

levels reported to date, thereby limiting their range of applications. Secondly, the energy 

harvester has to be durable to endure long-term exposure to vibrations. Thirdly, large scale 

and low-cost fabrication is desired. Finally, when energy harvesting from portable devices, 

they should be able to work under small mechanical stress levels, such as small movements 

of body, heart, finger, i.e. there is a need to demonstrate a high sensitivity. To date, a limited 

number of energy harvesters are currently able to fulfill all of these requirements. In this 

regard, and in order to address the above issues, the research community has also focused on 

another type of energy harvester, termed as the triboelectric nanogenerator (TENG). 

4. Triboelectric nanogenerator (TENG) 

An early version of the triboelectric generator was a mechanical device that created 

static electricity or high voltage by contact charging. The most famous devices were the 

Wimshurst machine (circa 1880) and Van de Graaff generator (circa 1929). Both instruments 

use accumulated static charges that are created by tribo-electrification, whereby tribo-charges 

are transferred from a rotating belt to a metal brush by corona discharging; e.g. the electric-

field-induced arching of air. Once the accumulated charge density reaches a critical value, 

discharge over two opposite electrodes occurs. The traditional triboelectric generator is a high 

voltage source, and there is no current apart from the discharging process. Although the 

triboelectric effect has been known for many years, the essential fundamental understanding 

of the process was relatively limited until recently. As with the piezoelectric effect, the 

triboelectric effect can be utilized to convert mechanical energy into electricity, however, the 
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mechanism differs since it relies on contact-induced electrification in which a material is 

electrically charged after it makes contact with a different dielectric material through contact 

friction. The polarity of the induced charge depends on the relative polarity of the two 

materials in frictional contact with one another, with respect to the triboelectric series [17, 96, 

97]. For a triboelectric nanogenerator (TENG) reported in 2012 [98], the area power density 

of a single nanogenerator device reached ~500 Wm−2, and the volume power density reached 

~15 MW m−3, and an instantaneous conversion efficiency of ~70% was achieved. The high 

output of the TENG makes it promising not only for common electronic devices, but it is also 

being considered for large-scale energy from wind and ocean waves [88]. 

Based on the four types of triboelectric harvesting device geometry [99], as shown in 

Fig. 5, it is possible to fabricate various types of TENGs depending on specific technological 

applications [96]. These methods are the fundamental units for offering micro-scale power for 

small and smart electronic devices, and their assembly and integration could be the basis for 

harvesting large-scale energy. The TENG offers a different approach for harvesting 

mechanical energy compared to piezoelectric devices, by using organic and inorganic 

materials. An energy conversion efficiency of 50-85% has been demonstrated and an output 

power density of 1200 W m-2 has been realized [96, 100]. TENGs can be used as a micro-

scale power source for mobile and portable electronics [100], and an example of their 

potential to harvest energy higher power levels from the ocean and wind is shown in Fig. 6, 

which was proposed as a new field of ‘blue energy’ [96]. In 2016, Yong et al.[101] 

demonstrated harvesting wind via using a wind-rolling triboelectric nanogenerator (WR-

TENG), as shown in Fig. 7 (a).  A single component of a WR-TENG produced an open-

circuit voltage of ~ 11.2 V and a short circuit current of ~ 1.86 μA. In addition, the WR-
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TENG can be used as a sensor for self-powered wind velocity measurement as well as 

harvesting energy. Moreover, a facile and low cost technique was used to fabricate a 

triboelectric nanogenerator (NG) with a high electric output of ~ 1.2 W to an external load 

has been proposed [102], as shown in Fig. 7 (b), in which a human palm can generate 

maximum short-circuit current of 2 mA, delivering 1.2 W to an external load. The output 

power density of ~ 313 Wm-2 and a volume power density of ~ 54268 Wm-3 with an open 

circuit voltage ~ 1200 V and a maximum energy conversion efficiency of ~ 14.9%. This 

higher power was mainly due to the optimized nanogenerator device structure, appropriate 

materials selection and their surface modification. The operational mechanism revealed in 

this work was proposed to be useful in achieving large-scale mechanical energy harvesting 

from sources such as rolling wheels, wind power, and ocean waves. 

In 2012, Fan et al. [98] reported a simple and cost-effective all-polymer based 

triboelectric nanogenerator for mechanical energy harvesting, using a combination of tribo-

electrification and electrostatic induction. The TENG device was formed by two polymer 

films, with dissimilar electron-attracting abilities, with metal films deposited as electrodes. 

When the two polymer films are in contact, there is mechanical friction due to the natural 

nanoscale surface roughness, which generates equal and opposite charges on the contacting 

surfaces the films, thus, producing an electric potential at the interface. As the two films 

contact and separate, an alternating potential leads to electrons in the external load flowing 

back and forth. Such a polymer TENG yielded an output voltage of up to 3.3 V and a power 

density of 10.4 μW cm−3. In addition, the output electric signals of the TENG also revealed 

the influence of mechanical triggering, so that the TENG device can be used as an active 

sensor. Whilst some conventional sensors require an external power source, TENG sensors 
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provide an output electric signal without the need to supply an input power to the sensor tip. 

The TENG sensor has been used for sensing of vibration, motion, people and contact with 

objects [98]. 

Zhang et al. (2013) [103] fabricated a sandwich-shaped TENG where an aluminum 

film was placed between two polydimethylsiloxane (PDMS) membranes to achieve 

frequency multiplication by two contact electrification during one cycle of external force. In 

addition, the inclusion of micro/nano dual-scale structures (i.e., pyramids and V-shape 

grooves) on the upper PDMS surface was employed to enhance device performance. Owing 

to the bi-triboelectrification effects among the three layers, this sandwich-shaped TENG 

generated two triboelectric outputs under the external force in a single mechanical cycle. A 

peak output voltage of 465 V, current density of 13.4 μA·cm-2 and energy volume density of 

53.4 mW·cm-3 were achieved. In addition, the nanogenerator was used to light up five 

commercial light-emitting diodes (LEDs) and drive an implantable 3-D microelectrode array 

for neural prosthesis without any energy storage unit. Recently, TENGs have received more 

attention due to their large efficiency for energy conversion and high output; these include 

reduced graphene oxide nanorods (rGO NRs)/PVDF [104] (Fig. 8 (a)), radial-arrayed rotary 

electrification[105] (Fig. 8 (b)), anti-reflection coated transparent TENG [106] (Fig. 8 (c)), 

smart floor with integrated TENGs [107] (Fig. 8 (d)), rotating TENG for water electrification 

[108] (Fig. 8 (e)), self-powered wind vector TENG sensor [109] (Fig. 8 (f)) and hydropower 

harvesting TENGs [110] (Fig. 8 (g)) and hybridized blue energy and wind energy harvesting 

TENGs [111] (Fig. 8 (h)). 

Over 70% of the Earth’s surface is ocean and therefore represents a significant 

energy resource; for example, harvesting wave energy is of significant interest. TENG 
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devices have the potential to be more suitable than electromagnetic generators (EMG) for 

wave energy harvesting in the frequency range of < 5 Hz, which is well suited for our daily 

life, the ocean and nature. However, the EMG approach is more effective at frequencies 

above 5 Hz although it can heavy, more costly, and difficult to be installed in sea floor or at 

water surface for collecting the water wave energy [112]. Z.L. Wang suggested an idea of 

using TENG systems for wave harvesting; in this case the TENG was prepared using mostly 

organic materials and it was partially filled up with air, so that a network was created based 

on a large number of TENGs in the form of a fishing net that would flow at the vicinity of the 

water surface for water motion energy harvesting (2014) [96]. Wave motion could be used to 

drive the TENG to achieve contact-separation and sliding motion, so that the mechanical 

energy could converted into electrical power. The initial approximation determined that the 

power that could be produced is ~1 MW km-2, which could be multiplied by at least 10 based 

on future progress in material and structure design [96]; although a number of challenges 

remain. The benefits offered by TENG systems are low-cost, small size, independent of day, 

night or weather, and there is no significant safety concern. A detailed comparison with 

existing methods for harvesting wave energy is also worthy of investigation. 

Yufang Li et al. [113] introduced a single-electrode-based rotational triboelectric 

nanogenerator (SR-TENG) formed by two wheels and a belt for harvesting mechanical 

energy. Initially, four 1″-thick PMMA sheets were treated by laser cutting to form the two 

wheels. One wheel was connected to a rotational motor while another wheel surface was 

covered with a layer of PDMS, and the elastic properties of PDMS enabled complete contact 

between the two tribo-surfaces. On top of the PDMS layer, half of the wheel was protected by 

an aluminium film and the other half overlaid with PTFE film. The wheel with PDMS was a 
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rotatable wheel and a PTFE belt. The PTFE belt acted as a triboelectric polymer, while the Al 

film had the dual role of acting as a triboelectric layer and an electrode. Two working modes, 

the continuous discharge (CD) mode and the instantaneous discharge (ID) mode were 

demonstrated for the SR-TENG. The peak current of the SR-TENG with ID mode was ~ 

20 μA, where the external load was ~ 10 MΩ, which was 33-times higher than short-circuit 

current peak of the SR-TENG in the CD mode. In addition, the SR-TENG with ID mode 

acted as a self-powered sensor for detecting the centrifugal angle of a rotating wheel and 20 

LEDs were powered by the SR-TENG when the rotating speed was 1100 rpm. Recently, a 

TENG has also been used as a self-powered sensor for detecting static and dynamic processes 

arising from mechanical agitation using the voltage and current output signals of the TENG, 

with potential applications such as mechanical sensors, touch pads and smart skins (artificial 

skins). 

The previous sections have overviewed piezoelectric and triboelectric approaches to 

energy harvesting. We will now examine attempts to make such devices flexible. 

5. Flexible nanogenerator devices 

5.1 Flexible piezoelectric nanogenerators 

Large numbers of nanostructured energy harvesting devices have recently been 

produced using materials other than ZnO, such as PZT and barium titanate (BaTiO3). Most of 

these nanogenerator devices resemble micro-electro-mechanical systems (MEMS) devices 

and their fabrication often involves a number of micro-fabrication procedures such as 

photolithography, etching, and lift-off. As previously discussed, even though devices 

produced on rigid substrates yield the highest output powers, the use of ZnO nanorods on 

flexible substrates is beneficial for the realization of flexible devices. As will be detailed in 
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this section, nanorods can be readily grown in aligned arrays on flexible substrates. This 

provides the potential to strain the devices by bending the substrate, rather than being limited 

to only collecting energy from vibrations, or direct compression of the active material. 

5.1.1 ZnO-based flexible piezoelectric device 

In 2009, Choi et al. [114] demonstrated the use of a low temperature zinc nitrate-

hexamethylenetetramine (HMT) growth approach to produce nanorod arrays on a flexible 

conductive indium-tin oxide (ITO)-coated polyethersulfone (PES) substrate. In this study, 

upper electrodes based on the same substrate, with and/or without a Pd-Au coating, were 

pressed onto the nanorod arrays. By using a Pd-Au coating higher outputs were produced, 

achieving the current density of 10 μA cm−2 when compressed by 0.9 kg force. These 

enhancements in performance were credited to the Schottky barrier formed by the Pd-Au. In 

this experimental investigation, despite testing the entire array on a flexible substrate, the 

substrate was not flexed at any point to strain the nanorods. However, the same group later 

reported similar devices with other upper electrodes based on carbon nanotubes or graphene, 

where the entire device was subjected to bending; this produced a lower current density 

output of ~ 5 and ~ 2 μA cm−2 respectively. 

ZnO NW-based nanogenerators can be formed on a wide-range of flexible substrates, 

such as metals, polymers, and even curved substrates [115, 116]. Fiber-based nanogenerators 

have been developed for the conversion of vibration or mechanical energy into electricity 

using piezoelectric ZnO NWs radially grown around textile fibers (Fig. 9). The complete 

structure of the device was similar to a brush-to-brush assembly [30, 116], where one brush 

consisted of ZnO nanowires, while the metal nanowires acted as an additional brush. A cyclic 

relative sliding motion between the two nanofibers harvested power due to the deflection and 
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bending of the ZnO nanowires. A prototype fiber-based nanogenerator exhibited advantages 

in the construction of a flexible, adjustable, and wearable power source for smart clothing 

applications. Recently, Lee et al. [30, 117] produced a hybrid fiber-based piezoelectric 

generator composed of ZnO NWs and a polymeric poly(vinylidene fluoride) (PVDF) coating 

on a conducting fiber to transform low-frequency (<1 Hz) mechanical energy into electrical 

power. By attaching this nanogenerator device to a human arm, the folding-releasing motion 

of the elbow could develop a voltage output of ~ 0.1 V, current density ~ 10 nA cm−2 and 

power density of ~ 16 μW cm−3. This method revealed the improved performance and 

feasibility of the harvester as a power source for wearable electronic devices. Similarly, Li et 

al. [117] created a fiber nanogenerator based on carbon fibers that were cylindrically covered 

by textured ZnO thin films to form a flexible device. The ZnO film created a macroscopic 

piezo-potential across its inner and exterior surfaces, driving an electric current in the 

external load, where an output voltage of ~ 3.2 V and average current density of 0.15 μA 

cm−2 were obtained. The fiber based nanogenerator performed as a sensor to monitor the 

human heartbeat and was therefore of interest for use in medical diagnostic sensors and 

measurement apparatus. 

Recently, Lu et al. [118] fabricated micro- and nano-structured piezoelectric fibers 

using thermo-plastic nanocomposites and the fibers exhibited a high output voltage of ~ 6 V 

under bending, as shown in Fig. 10 (a). In addition, Yang et al. [119] demonstrated that ZnO 

nanowires can be used in flexible nanogenerators. In their work, the piezoelectric ZnO 

nanowires were fixed at both ends to electrodes and laterally packaged on a flexible substrate. 

Substrate bending produced a uniaxial tensile strain in the ZnO nanowire, leading to a 

piezoelectric potential along the wire that drives electrons to flow along the external circuit. A 
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repeating bending-releasing progression of the ZnO nanowire (NW) in the PENG generated a 

pulsed and alternating current signal. The generated open-circuit voltage and short-circuit 

current were ~ 20-50 mV and ~ 400-750 pA, respectively. This method offers a different 

approach for biomechanical energy harvesting, for instance from finger movement and the 

motion or heartbeat of an animal, even if the motion is uneven with mechanical instabilities 

and fluctuations. For practical technological applications, it is important to enhance the 

output power of PENGs by integrating large numbers of nanowires in a parallel arrangement 

on a single flexible display device. Therefore, several lateral nanowire-array-based flexible 

nanogenerators were fabricated by incorporating 700 rows with each row containing ~ 20,000 

lateral ZnO NWs. The entire device exhibited good flexibility and the nanowires were 

sufficiently strong to inhibit mechanical deformation. When the nanogenerator device was 

periodically deformed, a maximum voltage of ~ 1.26 V and a maximum current of ~ 28.8 nA 

were attained. 

Combined multiple ZnO NW-based NG devices are possible for fabricating flexible 

energy harvesters that possess a higher output to power electronic devices. Zhu et al.[120] 

validated a high-output PENG based on a lateral ZnO NW array by utilizing a sweeping-

printing method. Initially, the vertically-aligned ZnO NWs were transferred to a flexible 

substrate to form horizontally-aligned arrays with a crystallographic alignment. The metal 

electrodes were then coated by conventional photolithographic procedures to connect the 

NWs together. The consistent growth and position of the NWs led to improved reliability of 

the piezoelectric potentials and a successful scale-up of the output performance and an open-

circuit voltage of ~ 2.0 V and a peak output power density of ~ 11 mW cm-3 were observed. 

In addition, the PENG generated charge was stored into capacitors and utilized to power a 
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commercial light-emitting diode (LED), demonstrating its potential in applications for low 

power electronic devices. However, the fabrication method was based on photolithographic 

tools, which was a complex process and limits the potential of PENGs for scale-up. To 

address this difficulty and improve the output energy performance, Hu et al. [121] developed 

a new PENG based on a composite assembly by simply dispersing conical ZnO NWs onto a 

flat polymer film. Owing to the piezoelectric potential superposition of each conical NW, the 

device produced a macroscopic induced potential difference between the top and bottom 

electrodes when subjected to mechanical deformation. The output voltage was ~2 V and 

current of ~50 nA, which can drive small industrial electronic devices, such as liquid crystal 

displays (LCDs). The proposed flexible PENG is a facile, low-cost, and scalable technology 

for small personal electronics and self-powered systems. 

The use of different nanogenerator materials and fabrication methods for a range of 

device designs has been demonstrated. For example, devices have been demonstrated by 

using ZnO nanorods aligned laterally and vertically along a flexible substrate. Xu et al. [122] 

fabricated partially-covered strips of a seed layer so that the ZnO nanorods grew laterally, 

rather than perpendicularly to the substrate using lithographic methods. This fabrication 

method has a number of complex steps, although it led to the formation of well-organized set 

of lateral ZnO arrays that were joined in series, creating a high open-circuit voltage of 1.2 V, 

compared to low potential of 100 mV from a vertically-oriented device made by the same 

method. The output current density was also higher than the vertical device, at ~15 nA cm−2. 

A lateral ZnO-based device was later produced using a more simple method of ‘wiping’ a 

ZnO nanorod array that was arranged laterally in order to transfer it to a secondary substrate, 

where alternating gold electrodes were used [122]. Even though this meant that the nanorods 
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were randomly attached to the electrodes, and some of them were not connected the device 

produced a high open-circuit voltage of up to 2 V and a short-circuit current density of 

100 nA cm−2 when subjected to bending. 

As the use of flexible substrates became more common, the structure of a 

chemically-grown ZnO, filled with polymer of PMMA with a coated metal (often gold) 

electrode was examined in a number of research studies [123, 124]. Lee et al. (2011) [55] 

explored such a ZnO rod structure on a flexible Kapton polyimide substrate. The rods in this 

case were exposed by removing the PMMA surface by a plasma etching technique, and a 

gold electrode was pressed on top. During bending, the device produced an open-circuit 

voltage of ~350 mV and short-circuit current density of ~125 nA cm-2. This was increased to 

2.1 V by stacking and connecting devices, however, detailed information about the device 

fabrication and analysis was not included. Later, Hu et al. [125] produced an open-circuit 

voltage of 10 V by not exposing the nanorod tips, but leaving them covered with PMMA. The 

output voltage was amplified by covering both sides of the substrate with nanorod arrays, but 

the output current remained at only ~ 0.6 μA cm−2. This indicates that by increasing the 

internal impedance of the device it is possible to increase the ‘headline’ peak open-circuit 

voltage, however, this may lead to a reduction of the overall output power from the 

nanogenerator subject to an external load. 

It was considered that using a top electrode, such as gold, creates a Schottky barrier 

with ZnO nanostructures, which was thought to be essential to generate a measureable output 

from ZnO-based nanogenerator devices[9]. Such a requirement is now extensively considered 

to be related to screening by electrode contacts [13, 21]. This has also been tailored by 

addition of an insulating polymer (PMMA) layer, which may reduce screening, whilst also 
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providing a resistive barrier. However, it has been found that using a p-type material as the 

top electrode contact to create a p-n junction with the nanorods of ZnO can generate higher 

output signals [126]. A p-type coating had been examined in the early studies of bending of 

ZnO nanorods using an AFM by functionalizing the surface with a p-type oligomer.  

Briscoe et al. (2012) [127] fabricated a ZnO nanogenerator using a p-n junction, 

where the junctions were formed between n-type ZnO nanorods and the p-type polymer 

poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) produced on an ITO-

coated PET flexible substrate. Finally, the polymer (PEDOT:PSS) layer was coated only at 

the tips of the ZnO rods, allowing a highly conductive gold electrode to be simply coated on 

the surface while retaining a high freedom of movement in the ZnO nanorod array. When 

deformed, this device produced a maximum open-circuit voltage of ~ 10 mV and short-circuit 

current density of ~13 μA cm−2, which were relatively low output levels. This was increased 

to ~1 V (open circuit voltage) and 1.88 mA cm−2 (current density) with 434 μW cm-2 (power 

density) on an optimum load of 6 kΩ by improving the nanogenerator device structure and 

reducing screening by conformably coating the ZnO surface with a thin layer of the p-type 

CuSCN. Although the output voltage generated by this device was lower than many devices 

comprising PMMA–Au Schottky contacts, it was later shown that by using a more 

conductive p-type polymer poly(3,4-ethylenedioxythiophene-Tosylate) (PEDOT:Tos) a 

higher output voltage of 95 mV was produced compared to PEDOT:PSS, which offered 

18 mV when strained using an AFM tip [1]. 

Later, advanced flexible devices were manufactured by growing ZnO nanorods on 

the surface of ‘common paper’ as a substrate, which had the significant impact of providing a 

route to produce large-area flexible devices [128]. Unfortunately, no bottom electrode was 
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employed in this case, hence a small output of 15 mV and 10 nA measured for these devices, 

which was later increased to 10 V and 600 nA by another group using cloth substrate [28, 

128]. However, a nanogenerator device based on a cloth substrate has been described where a 

silver bottom electrode was coated on the cloth before ZnO growth, the output was tested 

using an AFM, and thus the flexibility of the cloth was not utilized [28, 128]. 

The majority of the flexible devices discussed so far have been manufactured on 

plastic sheets, such as polyimide, polyethylene terephthalate (PET) or polyestersulfone (PES). 

As previously mentioned, an interesting technological application for flexible nanogenerators 

is wearable technologies, so that the energy from the wide range of human motion can be 

captured and used for portable charging of devices. Such potential technological applications 

have been demonstrated by Qin et al. (2008) [116] using a ZnO nanorod-based energy 

harvester grown on a Kevlar fiber. The Kevlar fiber was first seeded by sputtering with a ZnO 

thin film, which then allowed the growth of ZnO nanorods on the surface by chemical 

synthesis. 

Kim et al. [129] reported a fully-functioning, flexible energy harvesting device using 

ZnO nanorods on Au-coated woven polyester substrates. The device was finished by pressing 

another gold-coated polyester layer onto the surface as an upper electrode. The ZnO nanorods 

were contacted with both their base and tip so that the piezoelectric polarization, induced by 

straining the nanorods when the polyester cloth was bent, could be efficiently used to produce 

a voltage across an external load. An enhanced output was attained by placing a 40 μm thick 

polyethylene (PE) spacer between the ZnO nanorods and top electrode that when excited by 

acoustic vibrations at ~100 dB, the device created ~ 4 V open-circuit voltage and short-circuit 

current density of 0.15 μA cm−2. Not only did this reveal the possibility of producing 
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harvesting and sensing devices on textiles, but it also demonstrated an output from acoustic 

vibrations, possibly enabled by the extremely flexible fabric substrate. By neglecting the PE 

spacer, a lower voltage of ~ 0.5 V was produced. The authors attributed the improvement to 

the presence of a PE layer where an electrostatic effect was activated due to its initial surface 

charge of -2×10-4 C m-2, whereby it is performing as an electret generator, adding to the 

piezoelectric output from the ZnO nanorods. 

ZnO nano-wall [123] structures have also been used in a more common 

ZnO/PMMA/Au arrangement, where the nano-walls may formed due to the high 

concentrations (15 mM) of polyethylenimine (PEI) during synthesis, though substrate effects 

cannot be ruled out as the bottom electrode material was not detailed. The device produced an 

open circuit voltage of ~ 2.5 V and short-circuit current of ~ 80 nA with a power output of 

37.7 nW cm−2 achieved across a 75 MΩ load resistance when manually deformed. An 

example of such a structure has been produced using a zinc nitrate-hexamethylenetetramine 

(HMT) by a chemical procedure that would nominally create nanorods [130], but when used 

on an aluminium-coated polyethersulfone (PES) substrate ZnO nano-sheets were formed due 

to the interaction with the Al surface. An Au-coated polymer substrate was then pressed onto 

this nanosheet array, which produced open-circuit voltage of ~ 0.75 V and short-circuit 

current of 16 μA cm−2 using a force of 4 kgf (39.2 N). Even though the authors highlight the 

single polarity output was related to the ‘layered double hydroxide’ construction of Zn and Al, 

it is likely to be caused by a loss of contact between the free-standing electrode and the ZnO 

upon releasing the structure, as observed in the original AFM tests. 

ZnO-based nanogenerators that use nanoparticles [131] rather than nanorods have 

also been demonstrated by combining them with carbon nanotubes (CNTs) in a hybrid 
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composite embedded in polymer of polydimethylsiloxane (PDMS). This was sandwiched 

between conductive (PET/ITO) substrates, and during bending ~ 0.4 V open-circuit voltage 

and ~ 50 nA short-circuit current were produced. Manual pressing of the NG produced an 

open-circuit voltage of ~ 7.5 V and short-circuit current were ~ 2.5 μA and, by pressing with 

a foot, a peak output up to 30 V was achieved. This device was reported to also exhibit 

excellent durability and could withstand high levels of stress. 

5.1.2 Additional flexible piezoelectric nanogenerators 

In addition to ZnO, a range of other materials has been explored to produce flexible 

PENG devices. BaTiO3 nanowire based powders were prepared hydrothermally without a 

substrate, via a reaction between barium hydroxide and sodium titanate nanowires [132]. The 

BaTiO3 nanowire powders were dispersed in PDMS and cast onto a silicon substrate for 

curing, after which they were sandwiched between two ITO/PET substrates to create an 

energy harvester. The devices were tested by bending 5 mm at 0.22 mm sec-1, which 

produced an open-circuit voltage up to 7 V and short-circuit current ~ 360 nA. The maximum 

output power of 1.2 mW was found on a 20 MΩ load. Moreover, flexible BaTiO3 and 

composites with large areas were prepared by Park et al. [40, 133], as shown in Fig. 10 (b-c). 

Among the various emerging nanofabrication procedures, transfer methods have received 

attention due to their ability to create various geometry-controlled nanowire materials on 

flexible substrates [134]. During the fabrication process, chromium and BaTiO3 were 

deposited using a thermal evaporator and RF sputtering system, respectively. 

Lead zirconate titanate (PZT) is a commonly used material in macro- and micro-scale 

piezoelectric energy harvesters due to its high electro-mechanical coupling and piezoelectric 

coefficients (e.g. d33 for PZT of 500-600 pC/N compared to ~12 pC/N for ZnO) [124]. Many 
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technological applications using nanoscaled PZT have used lateral films of electrospun fibers. 

Cui et al. [124] prepared aligned electrospun PZT fibers on a PDMS-coated iron oxide 

(Fe3O4) substrate, encapsulated with PDMS and contacted at each end with silver electrodes 

to form an energy harvester. When the fibers were deformed they generated an open-circuit 

voltage of ~3.2 V and a short-circuit current of ~ 50 nA. Wu et al. [46] manufactured aligned 

arrays of PZT nanowires by electrospinning PZT/poly(vinylpyrrolidinone) (PVP) precursors 

onto a series of bridge-like electrodes. The electrospun film could then be detached and 

attached to a PET substrate using PDMS, and silver electrodes were added at each end. In 

bending-mode, the devices created an open-circuit voltage of ~ 6 V and ~ 45 nA short-circuit 

current, with an average power of ~ 0.12 µW across a 100 MΩ load. An open-circuit voltage 

up to 209 V was observed for an electrospun PZT fiber array arranged perpendicular to the 

substrate by cutting sections of the film, rotating, and stacking a number of layers; as reported 

by Gu et al. [22]. 

Various types of electrospun fibers of piezoelectric materials have also been 

investigated for energy harvesting. Kang et al. [135] prepared Mn-Doped 

(K,Na)NbO3 (KNN) fibers by electrospinning in polyvinylpyrrolidone (PVP) and annealing 

at 750 °C. These were deposited on a polyether sulfone (PES) substrate by implanting in 

PDMS and were attached using interdigitated platinum electrodes. In bending-mode, the 

devices generated a maximum open-circuit voltage of ~ 0.3 V and short-circuit current of ~ 

50 nA. In addition, vertically-aligned KNN nanorods [136] have also been used in an energy 

harvester. These KNN nanorods were manufactured hydrothermally on a conductive 

SrRuO3/SrTiO3 substrate at 190 °C, followed by annealing at 600 °C for 12 h. Epitaxial-

matching of the substrates was necessary to produce oriented nanorods, which were mostly 



31 

 

fused at the base but separated at the tips, and were well aligned. Finally, a nanogenerator 

was formed by attaching a gold-coated Kapton substrate to the top of the nanorods and poling. 

The piezoelectric response of individual nanorods and the output of the entire device were 

tested by mechanically applying a periodic compressive force. This produced ~0.4 V open-

circuit voltage and short-circuit current of 7 nA at 1 kgf (9.8 N). A peak power density of 

101 mW cm−3 was obtained for a 60 MΩ load resistance, where the volume was not specified. 

In 2014, Jeong et al. [137], fabricated large area and flexible lead-free 

(Na,K,Li)NbO3 which was combined with copper nanowires in a PDMS-embedded 

nanogenerator device. The power from the device was extracted more effectively from the 

insulating polymer matrix of PDMS using the conductive Cu nanowires; in this study an 

optimum power produced for a 1:2 Cu:KLNNbO3, generating a 12 V open-circuit voltage and 

1.2 μA short-circuit current. This method was acceptable to form a large-area nanogenerator, 

with 30×30 cm2 device being easily produced, providing 140 V and 8 μA, with ~ 0.4 mW for 

an optimum load of ~ 40 MΩ. A PDMS-embedded device was created using ZnSnO3 nano-

cubes, produced from an aqueous chemical process. When compressed by rolling over the 

device using a car, the device produced an open-circuit voltage up to 20 V and short-circuit 

current density up to 1 μA cm−2. In 2016, Park et al. [138] fabricated a polymer-based flexible 

nanogenerator for sensor applications, as shown in Fig. 10 (d), which was used to measure a 

human pulse when applied directly to the skin. Recently the flexibility, stretchability, 

durability, and harvesting capability of organic and/or inorganic materials such as BiFeO3–

PDMS composites [139] (Fig. 11 (a)), laterally aligned PZT [140] (Fig. 11 (b)), fine scale 

fibers of Ba0.85Ca0.15Zr0.1Ti0.9O3 [141] (Fig. 11 (c)), nanotube arrays of PbTiO3 [142] (Fig. 11 

(d)) and graphene/ZnO nanorod hybrids [143] (Fig. 12) based nanogenerators have been 
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examined in order to improve the performance and multi-functionality of piezoelectric 

nanogenerators.  

Today, energy harvesting devices based on piezoelectric PVDF polymers are being 

increasingly considered. Although PVDF-based devices are often not considered as 

‘nanogenerators’, being compared to bulk, thin-film and microscale energy harvesting 

devices, they often benefit from the nanostructuring of the PVDF material, and are often 

similar in terms of overall device design and strain method to many nanogenerators [117]. 

For example, PVDF is often in the form a flexible, thin, sheet-like device with or without a 

supportive substrate, which is pressed or flexed to produce a power output. For devices 

consisting of PVDF-based nanocomposites containing reduced graphene oxide (RGO) [144, 

145] in the form of a flexible sheet, it was found that the addition of a small faction amount 

of RGO doubled the output power due to templating by the graphene. The power output of 

the device was evaluated by vibrating at 1g at a resonant frequency of 41 Hz, leading to an 

output power of ~ 36 nW on a 704 kΩ load. In addition, electrospun nanofibers of flexible 

PVDF have been examined for a number of energy harvesting applications, which have been 

recently reviewed [146-148]. 

5.2 Flexible and stretchable triboelectric devices 

Recently, flexible TENG devices have also been considered in energy harvesting 

applications. In this aspect, nitrogen-doped carbon nanotube-(CNT) based flexible TENGs 

were prepared by Khan et al. [149]. This TENG consisted of two layers, including polyimide 

(PI), polydimethylsiloxane (PDMS) and CNTs served as a bottom layer, while 

polytetrafluoroethylene (PTFE with aluminum (Al) and polyimide (PI) was the top layer to 

create a flexible TENG based on CNTs fabricated via chemical vapor deposition (CVD). The 
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fabricated TENG produced an output open circuit voltage of ~ 20 V, output short-circuit 

current of ~0.7 µA and an output power of 10.3  μW for a load of 40 MΩ. Finally, the charge 

produced by the flexible TENG was to charge commercial capacitors, which were then used 

for lighting LEDs and power thermal sensors. In 2016, a polydimethlysiloxane (PDMS) and 

multiwall carbon nanotube (MWCNT) based flexible and biocompatible triboelectric 

nanogenerator was fabricated by Zhu et al. [150], as shown in Fig. 13. During their 

investigation, they varied the fraction of MWCNT from 2 wt % and 10 wt %. Under a 

vertical force of 3.0 N, the triboelectric output voltages of Prototype I (10 wt%) and 

Prototype II (2 wt %) were 30 V and 25 V respectively. Recently, in 2017, Wu et al. [35] 

reported a compact multi-layer flexible nanogenerator, which was prepared using fluorinated 

ethylene propylene with a Ag electrode. By pressing the 4 × 4 cm2 device, an output current 

peak of ~ 3 mA was measured, which was sufficiently large to power a wireless remote 

system with an effective emitting distance of 30 cm. In addition, a variety of self-powered 

triboelectric nanogenerators (TENGs), such as an auxetic foam based triboelectric 

nanogenerator [151] (Fig. 14 (a)), a free-standing mode tribo-tronic tuning diode TENG 

[152] (Fig. 14 (b)), a single-thread-based triboelectric nanogenerator [153](Fig. 14 (c)), a 

textile based foldable wearable TENG [154](Fig. 14 (d)), a serpentine patterned electrode 

based flexible TENG [77] (Fig. 14 (e)), a graphene based crumpled substrate TENG [24] (Fig. 

14 (f)), a two sliding mode TENG [155] (Fig. 14 (g)), a rolled TENG [156] (Fig. 14 (h)), a 

rubber based joint motion TENG [157] (Fig. 14 (i)) and an electrostatic actuation based 

TENG [158] (Fig. 14 (j)), have been prepared and demonstrated.  

To harvest improved amounts of energy, advancements in TENGs are important. 

However, to date the stretchability and sensitivity of prototype devices remains low and they 
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are restricted due to rigid materials, limiting device applications. In order to solve these issues, 

flexible interdigital-electrodes-based triboelectric generators (FITG) [159] (Fig. 15 (a)), and 

hydrophobic TENGs [160] (Fig. 15 (b)) have been considered.  

Triboelectric nanogenerators normally consist of multiple components with a 

relatively high thickness of ~ 0.5-5 cm to enhance sensitivity. In this aspect, Chen et al. 

(2017) [161] recently demonstrated that an ultrathin flexible single electrode triboelectric 

nanogenerator (S-TENG) using nanoporous PTFE (180 μm) with surface modification of a 

Cu film (~20 nm) for a non-transparent TENG and a fluorinated ethylene propylene (FEP ~ 

25 μm) thin film to fabricate a transparent TENG. Under the application of a pressing force of 

140 N by a latex glove box, the non-transparent TENG exhibited an output current of ~ 60 μA 

and an open circuit voltage of ~ 150 V. The peak power was maximized at a load resistance 

of 6 MΩ, corresponding to 8.58 mW. For the same experimental conditions, the transparent 

S-TENG had a current and voltage output up to 78 μA and 340 V respectively, obtained when 

the device was subjected to an impact by a human palm covered with a latex glove. Using 

this device, the authors were able to light up 70 commercial LEDs. In addition, when tapped 

by a finger the device produced a current of ~ 1 μA and the sensitivity was ~0.947 μA MPa−1. 

From these experimental results ultrathin TENGs have been shown to act not only as a 

mechanical energy harvester of human movements and ambient sources of motion, but also 

as effective sensors.  

Recently, a graphene oxide (GO) based single-electrode TENG system has been 

fabricated by Guo et al. (2017) [162]. A poly(tetrafluoroethylene) (PTFE) polymer with a 

thickness of 0.07 mm was chosen as the substrate material due to its excellent physical and 

chemical properties such as its light-weight nature and high impact strength. Initially, a GO 
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film prepared by the Hummers method was transferred to an Al electrode. The Al electrode 

was then fixed onto the PTFE substrate to make a stable TENG. In the control experiment, a 

PTFE film was used to replace the GO film for fabricating a single-electrode TENG, as 

shown in Fig. 15 (c). Finally, the as-designed multifunctional TENG device could not only 

harvest mechanical energy from ambient movements with a power density of 3.13 Wm–2 but 

was also enabling to detect dynamic force with a sensitivity of ~ 388 μA MPa–1. In 2017, 

Cheng et al. [163] fabricated a transparent and wrinkle structured TENG by fluorocarbon 

plasma on poly(dimethylsiloxane) (PDMS) and a variety of ‘solaris’ membranes, as shown in 

Fig. 15 (d). It was reported that the C4F8 plasma-treated wrinkled PDMS had a higher 

performance than a flat PDMS-based and flat solaris based TENG. Moreover, the results 

revealed that combining the high electron affinity fluorocarbon and wrinkled pattern PDMS 

enhanced TENG performance, which was mainly due to the increased surface area, high 

transparency of PDMS and the increase carrier concentration due to the fluorocarbon. 

6. Hybrid energy harvesting nanogenerators 

As a result of increasing interest in self-powered flexible micro- and nano-systems, 

energy harvesters based on different mechanisms have been extensively examined for 

harvesting energies from our surrounding environment, such as the piezoelectric 

nanogenerator (PENG) and triboelectric nanogenerator (TENG). In addition, pyroelectric 

nanogenerators and thermoelectric nanogenerators (ThENG) [164] for scavenging thermal 

energy have been explored. However, as the final goal is to improve the overall power output 

and realize maximum utilization of multi-type energies, the individual energy harvesters have 

recently been integrated as hybridized nanogenerators. Wang et al. [165] fabricated a flexible 

triboelectric-piezoelectric hybrid nanogenerator (TPENG) based on P(VDF-TrFE) nanofibers and 
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PDMS/MWCNT using an electro-spinning method and the device was used for wearable 

technological device applications. Double silver electrodes on a P(VDF-TrFE) film were used to 

characterize the output piezoelectric performance. This circuit was connected to a bottom silver 

electrode and a PDMS/MWCNT film to demonstrate the output performance of triboelectric 

mechanism. At the same time, the TPENG was loaded by a fingertip force that was monitored by a 

pressure sensor. The TPENG output voltage, power and power density under triboelectric 

mechanism were 25  V, 98.56  μW and 1.98  mWcm-3 respectively, under a 5 N force. Additionally, 

an output peak-peak voltage of ~ 2.5 V, output power of ~9.74 μW and power density of 0.689  

mW cm-3 were produced under piezoelectric operation at the same condition.  

Based on piezo-tribo-pyro-photoelectric effects, Kewei Zhang et al. [164] fabricated a 

single-structure-based multi-functional coupled nanogenerator, as shown in Fig. 16. The piezo-

tribo-pyro-photoelectric nanogenerator consisted of three parts: (i) a PZT block, for piezoelectric, 

pyroelectric and photoelectric active system; (ii) polyamide (nylon) with fluorinated ethylene 

propylene (FEP) acting as the flexible vibrating film to introduce tribo-electrification and apply a 

strain to adjacent PZT during vibration; (iii) a bottom electrode of a thin silver (Ag) film under the 

PZT and (iv) a top electrode consisting of a thin indium tin oxide (ITO) film combined with Ag 

nanowires/polydimethylsiloxane (AgNWs/PDMS) film. When compared with the individual 

TPiENG, both the individual pyroelectric and individual photoelectric active system produced a 

larger output voltage, but smaller output current. By combining a photoelectric active system, 

pyroelectric, and tribo-pyro-photoelectric system into a single device and using the same output 

electrodes, a complementary power source with a peak current of ~5 μA, peak voltage of ~80 V, 

and platform voltage of ~50 V was attained. The hybrid nanogenerator that combined the 

functions of piezo-, tribo-, pyro- and photo-electric effects could charge a 10 μF capacitor to 5.1 V 
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in 90s. 

Recently, several researchers explained [166-169] the stepwise operation mechanism used 

to investigate the combined effects of piezoelectricity and triboelectricity in flexible substrate 

media, as shown in Fig. 17. While piezoelectricity and triboelectricity are two different 

phenomena they share several unique operational features of mechanical-to-electrical energy 

conversion. For example, both piezo-and tribo-electric materials respond well to many mechanical 

energy sources, such as compression, deflection/strain, and vibration. In addition, their different 

working mechanisms suggest that their electricity generation procedures do not overlap with each 

other, since the triboelectric needs only the function of a material surface whereas the bulk part is 

responsible for the piezoelectric harvester. Therefore, these two properties can be collected for the 

equivalent type of mechanical-energy harvesting systems with combined electrical energy output. 

Pioneering work has demonstrated the possibility of integration of triboelectric and piezoelectric 

effects for mechanical-energy harvesting in one integrated system, as shown in Fig. 17. 

7. Innovative applications of nanogenerators 

It is well-known that the piezoelectric and triboelectric properties of materials offer a 

way to convert mechanical energy directly, from sources such as fluid flow, moving parts of 

machines and human body movements, into electrical power for microscale device uses. The 

device applications of PENG and/or TENG include self-powering conventional electronics 

such as Light Emitting Diodes (LEDs) [167, 170, 171] and Liquid Crystal Displays (LCDs) 

[172]. Examples, such as self-powered nano/micro gadgets [173], implantable power storage 

devices, smart wearable systems [174] such as wrist watches, power shoes and power shirts 

are shown in Fig. 18. Compared with other applications, micro/nano sensors have attracted 

attention due to their potential device applications in sensing micro/nano-objects such as 
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touch sensors, heat sensors, particles, cells, and DNA. These PENG-based nanogenerators are 

important for fabricating small-scale sensors [166, 175, 176] and are focused on driving a 

nano-device by energy harvesting from its working environment instead of a conventional 

battery or any other energy storage and/or energy supply systems. In addition, nanogenerators 

can exploit small-scale device applications in medical treatments [172, 177-181], such as 

small physical motion during inhalation and the corresponding motion of the lung, heartbeat, 

and muscle movement, as shown in Fig. 19. 

Transparent and flexible TENG sensing array devices have been used for Touch 

Security Applications (TSA) [173, 182], and LCD touch screens [98, 172] powered by a 

transparent TENG, which covers the screen and converts the energy of a finger pressure into 

electricity [98, 173]. Recently a self-powered TENG based flexible Li-ion battery and super 

capacitor have been used for advanced energy storage/supply devices [27, 183], as shown in 

Fig. 20 and 21. Additionally, Wei Li et al. [184] reported the dual-functionality of a thin 

patch loudspeaker or microphone for flexible electronic device; this was fabricated using a 

ferro-electret nanogenerator (FENG). By micro-plasma-discharging a FENG, the artificial 

voids inside the foam-structured ferro-electret forms numerous dipoles that enable the device 

to achieve high electromechanical transformation efficiency. They indicated that the 

mechanisms for direct and reverse interaction effects (that is, using mechanical energy to 

generate electrical energy, and using electrical energy to harvest mechanical energy) were the 

key factors of the FENG-based loudspeaker/microphone device shown in Fig. 21. 

Obviously, natural renewable sources such as light and thermal, ocean (blue energy) 

and wind power offers additional energy supplements to traditional energy strategies [185-

187]. Energy from the ocean is abundant and has many forms, including water current energy, 
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wave energy, tidal energy, thermal energy conversion, and reverse osmosis. However, such 

ocean energy harvesting may face significant engineering challenges, low efficiency and high 

cost. In order to decrease these difficulties, ocean energy harvesting using electromagnetic 

generators (EMG) were advanced. [96, 188] However, the output power generation on this 

device is small at the low mechanical frequencies associated with ocean. Hence an alternative 

approach has been proposed using TENGs. [88, 179].  

In contrast to EMGs, TENGs, based on the combination of triboelectric and 

electrostatic induction are reported to be more active at low frequencies. A spiral interdigital-

electrode triboelectric nanogenerator and a wrap-around electromagnetic generator (W-EMG) 

have been reported for harvesting ocean energy system, as shown in Fig. 22 (a). The hybrid 

blue energy harvesting nanogenerator can operate under either rotation mode or fluctuation 

mode to collect ocean current energy, tidal energy, and wave energy. In addition, the features 

and benefits of outputs from both devices were systematically examined and compared. The 

results showed that the S-TENG has more benefits for collecting ocean energy at low 

frequency than a W-EMG; this will not only power electronic device units but also charge 

other energy storage devices, allowing the nanogenerator to produce electricity in a wide-

range of working frequencies. In addition, Z. L. Wang’s blue energy approach [96] involves 

networking millions of spherical balls based on triboelectric nanogenerators for harvesting 

low-frequency water wave energy; the concepts of the networks are shown in Fig. 22 (b-c). 

This blue energy scheme was also executed by Kim et al. [189], as shown in Fig. 22(d).  

Chuan He (2017) et al. [190] recently fabricated an hourglass triboelectric 

nanogenerator that extracts the kinetic energy of falling particles and/or small objects. In this 

work, the particles used were a combination of polytetrafluoroethylene (PTFE) pellets and 
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aluminum balls. From their investigations, they observed that for a falling particle volume 

ratio ~1:1 of PTFE pellets to aluminium balls 160 commercial light emitting diodes could be 

illuminated for ~18s intermittently. Furthermore, the fabricated hourglass-TENG can serve as 

a self-powered UV counterfeit detector, as shown in Fig. 22 (e). From all these investigations 

it is evident that there is growing interest in TENG based devices for large-scale energy 

harvesting applications. 

8.  Factors determining nanogenerators performance 

This section details the current understanding of the environmental factors affecting 

the energy harvesting properties of piezoelectric, triboelectric and tribo-piezoelectric 

nanogenerators. The most common influential factors include humidity, temperature, 

adsorption of oxygen and other substances and an understanding of nanogenerators device 

packing. The surface morphology and materials are also key factors for enhancing the 

performance of the final device. 

8.1 Humidity effects 

Ambient air consists of a mixture of gases Nitrogen (N), Oxygen (O), Argon (Ar), 

and water vapor. In particular, oxygen and water vapor can affect the triboelectric and 

piezoelectric materials and thus the activity of nanogenerators. Whether in a vapor or liquid 

phase, the ubiquitous presence of water may penetrate through the TENG's package into the 

gap between two contacted surfaces. The contact electrification process in TENG can be 

influenced by water penetration, as it can infiltrate the gap or adsorb as a thin layer on each 

surface during operation of the TENG. This influence generally depends on the wettability of 

the working surfaces and the amount of water present [191-194].  

It has been demonstrated that humid atmospheres can lead to degradation in the 
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dielectric strength of piezoelectric materials [195]. The degradation of dielectric strength is 

related to ion and defects movement to electrodes and grain boundaries, initiating a reduction 

in the electrical resistance and breakdown strength of the material [196]. The resultant 

leakage current increases the power consumption and can eventually lead to failure of the 

device. In order to avoid this situation, encapsulation of polymer coatings has been used to 

protect devices, but these polymers are permeable and do not completely avoid water vapor 

transmission [197]. Airtight sealing has also been attempted as a solution but it required more 

complex arrangements and production costs can be high [198]. Several additional 

mechanisms for the degradation of materials due to the presence of water have been 

proposed: (i) the structural assimilation of interstitial atomic hydrogen [199]; (ii) increase in 

the surface conduction initiated by the adsorption of water [200]; and (iii) the replacement of 

oxygen vacancies through the ceramic [201]. 

8.2 Temperature effects 

It is well known that the initial resistance of the piezoelectric and triboelectric 

materials is related to the temperature [195, 202]. A ferroelectric-based piezoelectric material 

loses its spontaneous polarization above a transition temperature, known as the Curie 

temperature (Tc). Typically, compared to nanosized materials (e.g. such as rods and wires), 

the Curie temperature (Tc) are lower for bulk PENG or TENG materials [203]. The Curie 

temperature of BaTiO3 is relatively low at ~130°C and varies with doping [194, 204]; for 

example, BaTiO3 can be modified via partial doping of either A-site doping (Ba2+ ions) or B-

site doping (Ti4+ ions) [205]. A-site doping with cations of the same valence as Ba2+ leads to a 

reduction in Curie temperature (e.g by substitution of Sr2+) without any substantial transition 

broadening. It was confirmed that the partial replacement of titanium by tin, hafnium or 
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zirconium usually led to a decrease in Tc and an increase in the maximum permittivity with 

content of dopant [205]. Since an ideal nanogenerator should be able to operate in a harsh 

environment for a prolonged time period, there is a need for improving the thermal stability 

which is an issue for many PENG and TENG materials. Among the various environmental 

factors, temperature is the one that most strongly affects the TENG’s performance, that is, 

during triboelectric testing the electric charge generated tends to decrease with increasing 

temperature [206]. It is essential to note that, the working mechanisms of TENGs is based on 

two main methods, which are contact electrification and electrostatic induction. The 

temperature-dependence of these two mechanisms have an important impact on the overall 

performance of the TENG due to heat transfer to or from the nanogenerators device [194]. 

8.3 Adsorption effects 

Typically, nanogenerators have a large surface-to-volume ratio, which can leave them 

vulnerable to adsorption of substances other than water and oxygen from the surrounding 

atmosphere [194, 204]. These adsorbed substances can change device performance 

significantly via a resistance change. Some substances, such as alumina substrates [207] 

attack the major part of the active material and permanently change its chemical composition. 

Adsorption of external charges also affects the conductivity of inorganic nanogenerators. The 

adsorbed charges interact electrostatically with the internal free carriers and can be regarded 

as a floating gate (i.e. electrically isolated by the oxide layer). Finally, the resistance 

variations due to adsorbates will vary the piezoelectric materials leakage current and affect 

power generation. That is, for an n-type material, positive charges act in a similar way to a 

positive gate that attracts electrons and increases conductivity (lowers resistance), but the 

negative charges deplete the internal electrons and decrease conductance. Some adsorbates 
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that are p-type semiconductors or high work function metals could form a Schottky barrier or 

p-n junctions with the n-type material (such as ZnO) [208, 209]. Such boundaries make a 

charge depletion region on n-type materials surface and decrease the carrier density. 

Subsequently, the screening effect is reduced and power output may be improved. In addition, 

during synthesis, reducing agents or hole depletion may increase the resistance, whereas the 

oxidizing agents or hole accumulation may decrease the resistance of p-type semiconducting 

materials [210]; this rule can be applied generally to non-wurtzite structured materials [211].  

8.4 Surface morphology effects 

The triboelectric process in TENGs is fundamentally a surface charging effect, and 

therefore the surface morphology and friction behavior of the active materials will effectively 

determine the output of these devices. In order to increase performance and lifetime, 

researchers have expanded the effective friction areas by using micro- and nano-shaped dual-

scale designs, and formed micro- and nano-scale patterns onto tribo-surfaces. Dual-scale 

patterns, pyramid patterns, and nanoscale patterns can enhance the roughness compared to the 

plane film, and thus TENG performance can be improved [17, 212, 213]. In addition to 

structural modifications, the material properties, such as the electron affinity, work function, 

friction can also play important roles in TENG output performance. 

9. Conclusions 

To harvest energy from ambient mechanical energy and provide power for various 

applications, such as touch and pressure sensors, self-powered portable electronics, flexible 

printed circuit boards and wearable medical devices, the development of flexible and 

stretchable materials and systems is essential for high performance device application. Hence, 

in this comprehensive review, we have presented the fundamental mechanisms, fabrication 
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methods, and applications of nanogenerators starting from traditional piezoelectric and 

triboelectric devices, along with recently reported flexible and hybrid devices. For traditional 

piezo- and tribo-electric nanogenerator devices, the stretchability and sensitivity are restricted 

due to their use of rigid materials. These nanogenerators’ technical difficulties are rectified by 

developing flexible and hybrid device fabrication methods, where various material 

classifications have been utilized based on ZnO nanowires, nanorods, barium titanate 

(BaTiO3), lead zirconate titanate (PZT), poly(vinylidene fluoride) (PVDF), graphene-based 

2D materials, and composite materials. As a result of the flexible and/or hybrid device 

fabrication, the performances of the hybrid nanogenerators can be enhanced, when compared 

to conventional PENG and/or TENG and/or flexible devices. Among the various energy 

harvesters, the combination of flexible and hybrid piezo- and tribo-electric nanogenerators 

can lead to improved performance, and the flexible devices are easy to integrate as a hybrid 

device, which makes them good candidates for the applications described above. Flexible 

hybrid devices have the potential of harvesting energy from mechanical vibrations, human 

actions, rotating tires, ocean waves (blue energy), with a range of applications in self-

powered nanogenerators that are able to operate without an external power supply for 

personal electronic devices, LED, LCD, sensing, detection, batteries, data processing and 

data transmission, medical sciences, environmental monitoring, and even large-scale power 

production. Finally, some major perspectives and challenges to enhance the performance of 

the device have been discussed in detail so that commercial systems that utilize the reported 

materials and device architectures may be realized. 
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Figure captions 

 

Fig. 1 Working principle of (a) Piezoelectric Energy Harvesting Nanogenerators (PENG); 

polarization (P) conditions and directions (b) Without an applied force, pressure or strain (c) 

During an applied force (d) After the applied force is removed.  

 

Fig. 2 (a) Schematic of traditional (i) Bimorph structure (ii) Unimorph structure based 

piezoelectric energy harvesters inspired from Ref[56] (b) Cross section of integrated 

electrostatically resonant scan tip for an atomic force microscope during 1993[56] @ AIP 

Copyright permission (c) Strain induced piezoelectric polarization induces a compensating 

two-dimensional electron gas (2DEG) at the AlGaN–GaN interface[57]@ Copyright 

permission 1999 from AIP (d)(i) SEM of piezoelectric micro-SFM, (ii) SFM force curve 

using the micro-fabricated device: y axis indicates piezoelectric current change, which is 

proportional to the cantilever vibration amplitude; x axis indicates frequencies of driving 

voltages applied to the PZT layers[58] @Copyright permission 2000 from AIP. 

 

Fig. 3 (a)(i) ZnO NW nanogenerator (ii) SEM of device structure after spin-coating a PMMA 

on grown NWs with cross-sectional view (iii) SEM of coverage of NWs by the PMMA layer 

(iv-v) Nanogenerator activated manually (vi) Open-circuit voltage of the nanogenerator 

rectified by a bridge rectifier under a stress of 1 MPa and enlarged view of one cycle in the 

shadowed region (inset)[79]@ Copyright permission2012 from ACS (b) ZnO NR based 

PENG device setup shown in (i), (ii) Image of device and (iii) Connection view for 

measurements. (iv) Self-assembled GaN NWs grown on n-type doped Si(111) substrates 

(resistivity ~0.007 Ω cm) (v) Variation of average output voltage generated by GaN NWs and 

harvested by the different AFM tips as a function of the constant normal force[95]@ 

Copyright permission 2017 from RSC. 

 

Fig. 4 (a) Schematic of the PZT nanofiber nanogenerator in (i), (ii) Cross-section of poled 

PZT nanofiber in the generator, (iii) Schematic of power output mechanism of the PZT 

nanofibers in longitudinal mode. Color presents stress level in PDMS due to a pressure on top 

surface. (iv) Open circuit voltage from free vibration of a Teflon cantilever setup[39]@ 

Copyright permission 2010 from ACS. (b) BaTiO3 NW energy harvester, (i) Schematic. (ii) 

Cross-sectional SEM of BaTiO3 NW arrays. (iii) BaTiO3 NW array based nanogenerator and 

energy harvesting device, which is smaller than a dime coin[93]@ Copyright permission 

2014 from Wiley. 

 

Fig. 5 Principle modes of triboelectric nanogenerators (TENGs) (a) Vertical contact-

separation mode (b) Lateral sliding mode (c) Single-electrode mode and (d) Freestanding 

triboelectric-layer mode (inspired from Ref [99]). 

 

Fig. 6 (a)(i) Schematic of disk TENG device. The inset (bottom left) is an enlarged figure of 

Kapton nanorod array on the surface area. (ii) Image of the two parts of a real disk TENG. 

(iii) Relationship between the open-circuit voltage/slope of the voltage and rotation speed. 

(iv) Schematic of working principle of the disk TENG with an electrons flow diagram in four 

consecutive stages within a full cycle of electricity generation at rotating speeds from 50 to 
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500 rpm; (v) Open-circuit voltage, (vi) Measured transferred charge density and (vii) 

Measured short-circuit current density[100]@ Copyright permission 2013 from ACS. 

 

Fig. 7 (a) Schematic of the wind rolling triboelectric nanogenerator (WR-TENG) shown in (i), 

(ii) Expanded polystyrenesphere rotating inside the WR-TENG (air flow velocity of 2.2 ms-1) 

(iii) Rolling ICC outputs based on the sphere-electrode size ratio[101] @Copyright permission 

2014 from Nature. (b) (i) Fabricated triboelectric NG, (ii) Electric energy generated by the 

current pulse in part a, which is equal to the Joule heating from the resistor of 1 M Ω. (iii-iv) 

Image of setup in which the NG acts as a direct power source for 200 green, red and blue 

LED bulbs, respectively and the estimated output open circuit voltage is ~ 1200 V[102]@ 

Copyright permission 2013 from ACS.  

 

Fig. 8 Images of (a) rGO NRs/PVDF triboelectric nanogenerator top and side view[104]@ 

Copyright permission 2016 from Nature (b) Rotary electrification for high performance 

triboelectric generator[105]@ Copyright permission 2014 from Nature (c) Transparent TENG 

(T-TENG) placed above a paper with alphabets on it. Bottom image is comparison of the T-

TENG and the TENG composed of a commercial 50 μm PTFE film[106]@ Copyright 

permission 2015 from Nature. (d)Smart Floor with Integrated Triboelectric 

Nanogenerator[107]@ Copyright permission 2017 from ACS. (e) (i-ii) Design of rotating 

triboelectric nanogenerator lighting up 30 LED’s[108]@ Copyright permission 2016 from 

Elsevier (f) Side and cross sectional view of wind energy harvesting TENG[109] shown in (i-

ii)@ Copyright permission 2013 from ACS. (g) Image of multi-layered disk TENG coupled 

with a water turbine for harvesting water flow energy and lighting up 100 LEDs in (i). (ii) M-

TENG energy harvesting system showing the detailed structural design (iii) Real-time 

measurement of current signal of the system[110]@ Copyright permission 2014 from Elsevier 

(h) Structure of the rotary triboelectric nanogenerator (R-TENG) with the enlarged image of 

nanowire-like structures on the surface of PTFE[111]@ Copyright permission 2013 from 

ACS.  

 

Fig. 9 (a) ZnO fiber-based PENG (i) Experimental set-up (ii) SEM of ‘teeth-to-teeth’ 

interface of two fibers covered by nanowires (NWs), top coated with Au (iii) Schematic of 

the teeth-to-teeth contact between two fibers (iv) Piezoelectric potential created across 

nanowires I and II on pulling the top fiber by an external force. (v) When the top fiber is 

pulled, the Au-coated nanowires rubs across the uncoated nanowires, resulting in output of 

electric current, as indicated by arrowheads. (vi) Enhancement of output current by reducing 

the inner resistance (Ri) of the nanogenerator[116]@ Copyright permission 2008 from Nature. 

 

Fig. 10 (a) (i) Schematic and (ii) photo of a BTO-PVDF based PENG in bent state (iii-iv) 

Open-circuit voltage and short circuit current of the PENG during bend and release actions. 

Equivalent circuits are inserted in the graphs[118]@ Copyright permission 2017 from ACS. 

(b). (i-ii) Flexible BaTiO3 nanogenerator (area ~ 82 mm2  and fill factor of 16.4%) supported 

on a plastic substrate after PDMS is peeled off (iii-iv) Energy harvesting during periodic 

bending and unbending on forward bias condition[40]@ Copyright permission 2010 from 

ACS. (C). (c) (i) Photograph of the p-NC stretched by tweezers. Inset shows NCG device (3 

cm x 4 cm) bent by fingers. (ii) Large-area type NCG device (13 cm x 13 cm) fabricated by 

spin-casting or Mylar bar-coating. (iii) Schematic of the cross-sectional structure of NCG 
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devices and calculated piezo-potential distributions for explaining the role of CNTs. The 

CNTs act as dispersing agent (insert (ii) and stress reinforcing agents (v) which are well 

supported by the calculated piezo potential difference (iii and vi))[133]@ Copyright 

permission 2012 from Wiley. (d) (i) Schematic and images of a flexible PENG for skin 

deflection by arterial distension (ii) Real-time sensor output waveforms measured from radial 

and carotid pulses[138]@ Copyright permission 2016 from ACS.  

 

Fig. 11 (a) BiFeO3-PDMS composite based PENG bent by fingers shown in (i). (ii) Red and 

green LEDs driven from hand pressing and release (iii) Durability test of the PENG. Inset 

shows an enlarged view of the open circuit voltage signal in the durability test process[139]@ 

Copyright permission 2016 from ACS. (b) Flexible semitransparent energy harvester with 

high pressure sensitivity in (i). (ii) FE-SEM image of the PZT NWs laterally aligned on 

electrodes. (iii) FTPH with large bending. (iv) Pressure dependence of output AC voltage and 

its linear fit[140]@ Copyright permission 2017 from ACS. (c) Nanofibers mat based PENG 

during tapping in (i). (ii) Measured output voltage during tapping (iii) Nanofibers mat based 

PENG during bending and (iv) Measured output voltage during bending[141]@ Copyright 

permission 2017 from ACS. (d) PbTiO3 (PTO) NTs/Ti fibers devices for PENG illustrating 

arbitrary bending motion using two of PTO NTs/Ti fibers in the PDMS polymer matrix (left), 

radially grown PTO NTs array on the Ti fiber (middle), PTO crystal structure indicating 

perovskite phase (top right), and individual PTO NTs (bottom right) as shown in (i); (ii) 

photograph of the p-NGs devices standing on a field, images showing the p-NGs devices in 

inset; (iii) EDS spectra of PbTiO3 (PTO) NTs/Ti fibers and (iv) output voltage signals from 

double wire p-NGs bended by 0°, 180°, 90°, and 270°[142]@ Copyright permission 2017 

from Wiley.  

 

Fig. 12 (a) Fabrication steps of the graphene/ZnO NR on a graphite substrate. (b) Surface of 

the graphene/ZnO NRs after exfoliation. Inset shows exfoliated free-standing graphene/ZnO 

NR composite based PENG. (c) Piezoelectric output potential measured from the ZnO 

NR/PDMS-based piezoelectric nanogenerator with an exfoliated graphene electrode. (d) 

Output voltage with frequency of mechanical force. Inset shows device structure[143]@ 

Copyright permission 2014 from RSC. 

 

Fig. 13 (a) Schematic of prototype TENG nanogenerator (b) Three layers of the 

nanogenerator prototype. (c) Electrons are transferred from PDMS/MWCNT to PDMS when 

they contact each other. (d) Electrons transfer between electrodes at separation state. (e) 

Vertical forces are applied on the generator again. (f) PDMS and PDMS/MWCNT at full-

separated state. (a) Electric potential between the triboelectric material surfaces with 0.1 mm 

interval. (b) Electric potential with 5 mm interval. (c) Electric potential with 10 mm interval. 

(a) Fabricated nanogenerator at the initial and full-contact states. (b) TENG lighting 16 LED 

bulbs configured in parallel. (c) Charging voltage and time of the two capacitors with 

different capacitance values[150]@ Copyright permission 2016 from Nature. 

 

Fig. 14 (a) Auxetic triboelectric nanogenerator[151]@ Copyright permission 2017 from Wiley 

(b) TENG in free-standing mode[152]@ Copyright permission 2016 from Wiley. (c) Single-

thread-based triboelectric nanogenerator[153]@ Copyright permission 2017 from ACS. (d) 

Flexible, foldable Wearable TENG[154]@ Copyright permission 2015 from ACS. (e) 
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Photographs of the FTENG[77]@ Copyright permission 2015 from Wiley. (f) TENG by 

graphene based crumpled substrate[24]@ Copyright permission 2014 from Wiley. (g) 

structural design and pictorial image of the TENG in two sliding states[155]@ Copyright 

permission 2013 from ACS (h) TENG roll of graphene/EVA/PET film after 

delamination[156]@ Copyright permission 2015 from Wiley. (i) Operational modes from joint 

motion TENG[157]@ Copyright permission 2015 from Wiley and (j) Two water droplets 

before and after the confluence; below image shows two kinds of phenothalin and potassium 

hydroxide droplets (pink colour) before and after the confluence[158]@ Copyright 

permission 2017 from Wiley.  

 

Fig. 15 (a) (i-iii) Schematic for sliding mode, image and short circuit current and open circuit 

potential versus rotation of the flexible interdigital-electrodes-based triboelectric generator 

respectively[159]@ Copyright permission 2014 from RSC.(b) Fabrication of water energy 

harvesting TENG, (i) the variation in weight percentage of the HCOENPs coated on PET 

fabric as a function of washing time in harsh environment. Insert is photograph of 

HCOENPs-coated PET fabric that holds dye aqueous droplets after being washed for 72 h. 

(ii-iii) All-fabric-based DMTEG constructed as a wristband, for harvesting water energy to 

drive commercial LEDs. All-fabric-based WTEG with effective dimensions of 1.5 cm × 1.5 

cm for output tests; effective dimensions of 3 cm × 3 cm for driving LEDs, (iv) Instantaneous 

power density generated from DMTEG with external resistance. Insert shows current without 

resistance[160] @ Copyright permission 2017 from Wiley. (c) Low thickness of graphene 

based S-TENG fabrication shown in (i-iii), (iv-v) Short-circuit current produced by different 

contact materials[162] @ Copyright permission 2017 from Wiley. (d) Fabrication of highly 

transparent and high-performance TENG as shown in (i), (ii-iii)comparisons of output 

voltage and current of TENGs using different contact-electrification materials[163]@ 

Copyright permission 2017 from Nature. 

 

Fig. 16 (a) Device architecture and working mechanism of the single-structure-based piezo-

tribo-pyro-photoelectric effects coupled nanogenerator. b) Physical mechanism of 

pyroelectric effect in PyENG. c) Light-induced charge separation and corresponding 

distribution of charge density in the PVC with ITO/PZT/Ag sandwich structure. d) Working 

principle of the vibrating TPiENG[164]@ Copyright permission 2017 from Wiley. 

 

Fig. 17 (a) (i) Operation mechanism to investigate combined effects of piezoelectricity and 

triboelectricity, (ii) Flexible hybrid NG, (iii) Output voltage under three testing modes: hybrid, 

triboelectric, and piezoelectric[166]@ Copyright permission 2016 from ACS. (b) Structural 

design of blue energy hybrid nanogenerator. (i) Schematic of the R-TENG and EMG. (Insert 

SEM of nanowires on PTFE thin film, schematic of TENG, which consists of a group of 

aluminum rods and PTFE thin film coated with the copper interdigitated electrodes, 

schematic of EMG unit, which consists of a pair of magnets and a coil) (ii) TENG and EMG 

hybrid nanogenerator. TENG is 45 cm3 in volume and 28.3 g in weight. The EMG is 337 

cm3 in volume and 311.8 g in weight. (iii) Charging curves of a 20 μF capacitor using TENG 

only, EMG only, and hybrid nanogenerator, showing hybrid charging offers both high 

charging voltage and fast charging speed. (iv) Robustness and stability investigation of the 
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TENG[168]@ Copyright permission 2016 from ACS. (c) (i) Photographs of fabricated hybrid 

generator at initial and full-contact states. (ii) Charging voltage and time ofthree capacitors 

with different capacitance values. (iii) Snapshots of the 550 LED bulbs configured in series 

before and when lit up. (iv) Snapshots of the 600 LED bulbs configured in series and parallel 

before and when hit by a 0.2-N mechanical force[167]@ Copyright permission 2015 from 

Nature. (d) (i) Schematic of the hybridized nanogenerator. (ii) Photograph of the flexible 

hybridized nanogenerator.(iii) Measured output current of the TENG–PiENG[169]@ 

Copyright permission 2016 from Wiley.  

 

Fig. 18 (a) (i-v) LEDs array on a PET film showing flexibility of PENG[170]@ Copyright 

permission 2015 from Nature, (b) (i-ii) GaN MW-based LEDs using PENG[171]@ Copyright 

permission 2017 from ACS, (c) flexible piezoelectric touch sensor[182]@ Copyright 

permission 2017 from Wiley, (d) (i-ii) Nanocomposite piezo-responsive foam (NCPF) sensor 

with wires embedded to measure the voltage response during impacts on shoes[174]@ 

Copyright permission 2017 from Springer. (e) (i-ii) Self-Powered Temperature 

Sensors[175]@ Copyright permission 2012 from ACS, (f) Heart beat measurement of 

piezoelectric sensor[176]@ Copyright permission 2016 from Nature. 

 

Fig. 19 (a) In vivo evaluation of optimal placement and orientation of PZT MEHs on the 

heart, and assessment of voltage output by varying the heart rate via dobutamine infusion and 

use of pacemaker (b) In vivo evaluation of PZT MEHs on lung and diaphragm (c) 

Performance of a PZT MEH evaluated with chest open and closed and scaling of power 

output in multilayer stacked designs[178]@ Copyright permission 2014 from PNAS, (d) A 

schematic and experimental condition of the artificial cardiac pace making using electrical 

energy from the flexible PMN-PT energy harvester. The inset is a flexible PMN-PT thin film 

stimulator used to stimulate the living heart of rat[180]@ Copyright permission 2014 from 

Wiley, (e) Energy harvesting sensor from the breath and heartbeat of a live rat using an SWG 

attached to (i) rat diaphragm and (ii) rat heart[181]@ Copyright permission 2010 from Wiley. 

 

Fig. 20 (a) Transparent and flexible triboelectric sensing array for touch security applications 

(i-ii) and working principle (iii-iv)[173] @ Copyright permission 2017 from ACS; (b)(i) 

Tactile sensing by STENG; Biomechanical energy harvesting by the STENG (ii) Image of 20 

green LEDs lit by VHB-STENG (iii-iv) Image of LCD screen powered by a transparent 

VHB-STENG, which covers the screen and converts finger pressing into electricity[172]@ 

Copyright permission 2017 from Science; (c) (i-ii) Sensing electrical output and optical 

measurement of the FTNG and (iii) FTNG device attached on the screen of a smart phone 

that indicates the high transparency of the NG device[98]@ Copyright permission 2012 from 

ACS; (d) (i) Self-powered TENG based flexible Li-ion battery. Photographs of the (ii) twisted 

and (iii) bent Li-ion batteries to light up a green LED[183]@ Copyright permission 2017 

from Wiley. 

 

Fig. 21 (a) Flexible Fiber-Based Supercapacitor–Triboelectric-Nanogenerator (i) Planar FSC 

(ii) bent FSC[27]@ Copyright permission 2015 from Wiley; (b) (i) Mechanism of  

transformation from acoustic energy to electric energy. (ii) FENG-based microphone system 

for recording music sound (iii) Experimental setup for free-standing FENG-based 

loudspeaker and (iii) recorded sound wave[184]@ Copyright permission from 2017 Nature. 
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Fig. 22 (a) Demonstration of hybrid nanogenerator as a blue energy power source, inserts are  

LED’s[188]@ Copyright permission from 2016 ACS. (b) Model of a blue energy dream (by 

Prof. Z. L Wang) by networking millions of spherical balls based on triboelectric 

nanogenerators for harvesting low-frequency water wave energy. The inset is the designed 

spherical TENG. The lower-right corner is an imaginary structure of the networks[187]@ 

Copyright permission from 2017 Elsevier. (c) Blue energy model[96]@ Copyright permission 

from 2014 RSC,(d)Blue energy harvesting TENG’s fabricated by Sang Woo Kim 

group[189]@ Copyright permission from 2016 ACS, and (e) hourglass triboelectric 

nanogenerator (HG-TENG) (i) photographic image of TENG device (ii) Operating process of 

the HG-TENG (iii) pictures of a row of LEDs lit up by the HG-TENGs in real time during 

one falling process[190]@ Copyright permission from 2017 Wiley. 

 


