45 research outputs found

    Inflammatory Markers as Predictors of COVID-19 Severity: A Review of Literature

    Get PDF
    Background: COVIDā€‘19 (severe acute respiratory syndrome [SARS] COVā€‘2), which is now a global pandemic, continues to spread acrosscountries and continents, bringing along with it untold economic hardship and a high mortality rate. Many biochemical changes have beenassociated with COVIDā€‘19. This study is aimed to establish an association between various inflammatory markers and the severity ofCOVIDā€‘19 to provide knowledge for the clinicians and help professionals that manage the disease. Methods: A search in PubMed/Medline, Google scholar, and Journal Storage (JSTOR) databases was conducted from May 15, 2020 to June 15, 2020, for studies that reported serum levels of inflammatory markers in COVIDā€‘19. Search terms included a combination of ā€œmedical laboratory diagnosis, inflammatory  markers, cytokines, acuteā€‘phase reactants, biomarkers and COVIDā€‘19, SARSā€‘COVā€‘2, and coronavirus.ā€ Results: Four hundred and twelve (412) articles were retrieved following the removal of duplicates, of which 15 articles were included in this study after meeting the study inclusion criteria. The included studies comprised 2828 COVIDā€‘19 positives made of 1472 (52.1%) male and 1356 (47.9%) female patients. The most prevalent laboratory finding was increased interleukinā€‘6 (IL) (100%), erythrocyte  sedimentation rate (88.9%), and procalcitonin (63.6%). Levels of ferritin, ILā€‘2, tissue necrotic factor (TNF)ā€‘Ī±, TNF-Ī³, serum amyloid A, interferon gamma, ILā€‘4, ILā€‘8, and ILā€‘10 were also increased. Conclusion: This study provides enough evidence that inflammatory markers are associated with the severity and prognosis of COVIDā€‘19.Inflammatory markers are, therefore, necessary if not the most important assays in the management of COVIDā€‘19 patients. Patients withelevated inflammatory markers should be given adequate attention and proper management to avert deterioration. Keywords: Acuteā€‘phase reactants, biomarkers, COVID 19, cytokines, immuneā€‘inflammatory markers, medical laboratory diagnosis, severeacute respiratory syndrome CoVā€‘2 and coronaviru

    Multiā€Element Surface Coating of Layered Niā€Rich Oxide Cathode Materials and Their Longā€Term Cycling Performance in Lithiumā€Ion Batteries

    Get PDF
    The energy density of layered oxide cathode materials increases with their Ni content, while the stability decreases and degradation becomes more severe. A common strategy to mitigate or prevent degradation is the application of protective coatings on the particle surfaces. In this article, a room-tem-perature, liquid-phase reaction of trimethylaluminum (TMA) and tetraethyl orthosilicate (TEOS) with adsorbed moisture on either LiNi0.85Co0.10Mn0.05O2or LiNiO2, yielding a hybrid coating that shows synergetic benefits compared to coatings from TMA and TEOS individually, is reported. The surface layer is investigated in long-term pouch full-cell studies as well as by electron micros-copy, X-ray photoelectron spectroscopy, and differential electrochemical mass spectrometry, demonstrating that it prevents degradation primarily by a fluorine-scavenging effect, and by reducing the extent of rock salt-type phase formation

    The effect of parity on maternal body mass index, plasma mineral element status and new-born anthropometrics.

    Get PDF
    Background: Adverse pregnancy outcome is an important public health problem that has been partly associated with increasing maternal parity. Aim: To determine the effect of parity on maternal body mass index (BMI), mineral element status and newborn anthropometrics. Methods: Data for 349 pregnant women previously studied for the impacts of maternal plasma mineral element status on pregnancy and its outcomes was analysed. Obstetric and demographic data and 5mls of blood samples were obtained from each subject. Blood lead, plasma copper, iron and zinc were determined using atomic absorption spectrophotometer. Results: Maternal BMI increases with parity. Women with parity two had significantly higher plasma zinc but lower plasma copper with comparable levels of the elements in nulliparous and higher parity groups. Although plasma iron was comparable among the groups, blood lead was significantly higher in parity > three. Newborn birth length increases with parity with a positive correlation between parity and maternal BMI (r = 0.221; p = 0.001) and newborn birth length (r = 0.170; p = 0.002) while plasma copper was negatively correlated with newborn\u2019s head circumference (r = -0.115; p = 0.040) Conclusion: It is plausible that parity affects maternal BMI and newborn anthropometrics through alterations in maternal plasma mineral element levels. While further studies are desired to confirm the present findings, there is need for pregnant and would-be pregnant women to diversify their diet to optimize their mineral element status. Keywords: Maternal parity, BMI, newborn anthropometrics, mineral element status, pregnant women, Nigeri

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950ā€“2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020ā€“21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62Ā·8% [95% UI 60Ā·5ā€“65Ā·1] decline), and increased during the COVID-19 pandemic period (2020ā€“21; 5Ā·1% [0Ā·9ā€“9Ā·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4Ā·66 million (3Ā·98ā€“5Ā·50) global deaths in children younger than 5 years in 2021 compared with 5Ā·21 million (4Ā·50ā€“6Ā·01) in 2019. An estimated 131 million (126ā€“137) people died globally from all causes in 2020 and 2021 combined, of which 15Ā·9 million (14Ā·7ā€“17Ā·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22Ā·7 years (20Ā·8ā€“24Ā·8), from 49Ā·0 years (46Ā·7ā€“51Ā·3) to 71Ā·7 years (70Ā·9ā€“72Ā·5). Global life expectancy at birth declined by 1Ā·6 years (1Ā·0ā€“2Ā·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15Ā·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7Ā·89 billion (7Ā·67ā€“8Ā·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39Ā·5% [28Ā·4ā€“52Ā·7]) and south Asia (26Ā·3% [9Ā·0ā€“44Ā·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92Ā·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Global disparities in surgeonsā€™ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study

    Get PDF
    : The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSSĀ® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 Ā± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 Ā± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 Ā± 4.9 and 7.8 Ā± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 Ā± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990ā€“2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2Ā·5th and 97Ā·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2Ā·63 billion (95% UI 2Ā·44ā€“2Ā·85) in 2010 to 2Ā·88 billion (2Ā·64ā€“3Ā·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14Ā·2% (95% UI 10Ā·7ā€“17Ā·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4Ā·1% (1Ā·8ā€“6Ā·3) in 2020 and 7Ā·2% (4Ā·7ā€“10Ā·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212Ā·0 million [198Ā·0ā€“234Ā·5] DALYs), followed by ischaemic heart disease (188Ā·3 million [176Ā·7ā€“198Ā·3]), neonatal disorders (186Ā·3 million [162Ā·3ā€“214Ā·9]), and stroke (160Ā·4 million [148Ā·0ā€“171Ā·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47Ā·8% (43Ā·3ā€“51Ā·7) and for diarrhoeal diseases decreased by 47Ā·0% (39Ā·9ā€“52Ā·9). Non-communicable diseases contributed 1Ā·73 billion (95% UI 1Ā·54ā€“1Ā·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6Ā·4% (95% UI 3Ā·5ā€“9Ā·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16Ā·7% [14Ā·0ā€“19Ā·8]), depressive disorders (16Ā·4% [11Ā·9ā€“21Ā·3]), and diabetes (14Ā·0% [10Ā·0ā€“17Ā·4]). Age-standardised DALY rates due to injuries decreased globally by 24Ā·0% (20Ā·7ā€“27Ā·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61Ā·3 years (58Ā·6ā€“63Ā·6) in 2010 to 62Ā·2 years (59Ā·4ā€“64Ā·7) in 2021. However, despite this overall increase, HALE decreased by 2Ā·2% (1Ā·6ā€“2Ā·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990ā€“2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 riskā€“outcome pairs. Pairs were included on the basis of data-driven determination of a riskā€“outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each riskā€“outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of riskā€“outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2Ā·5th and 97Ā·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8Ā·0% (95% UI 6Ā·7ā€“9Ā·4) of total DALYs, followed by high systolic blood pressure (SBP; 7Ā·8% [6Ā·4ā€“9Ā·2]), smoking (5Ā·7% [4Ā·7ā€“6Ā·8]), low birthweight and short gestation (5Ā·6% [4Ā·8ā€“6Ā·3]), and high fasting plasma glucose (FPG; 5Ā·4% [4Ā·8ā€“6Ā·0]). For younger demographics (ie, those aged 0ā€“4 years and 5ā€“14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20Ā·7% [13Ā·9ā€“27Ā·7]) and environmental and occupational risks (decrease of 22Ā·0% [15Ā·5ā€“28Ā·8]), coupled with a 49Ā·4% (42Ā·3ā€“56Ā·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15Ā·7% [9Ā·9ā€“21Ā·7] for high BMI and 7Ā·9% [3Ā·3ā€“12Ā·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1Ā·8% (1Ā·6ā€“1Ā·9) for high BMI and 1Ā·3% (1Ā·1ā€“1Ā·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71Ā·5% (64Ā·4ā€“78Ā·8) for child growth failure and 66Ā·3% (60Ā·2ā€“72Ā·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF
    corecore