24 research outputs found

    The Dipole Anisotropy of the First All-Sky X-ray Cluster Sample

    Full text link
    We combine the recently published CIZA galaxy cluster catalogue with the XBACs cluster sample to produce the first all-sky catalogue of X-ray clusters in order to examine the origins of the Local Group's peculiar velocity without the use of reconstruction methods to fill the traditional Zone of Avoidance. The advantages of this approach are (i) X-ray emitting clusters tend to trace the deepest potential wells and therefore have the greatest effect on the dynamics of the Local Group and (ii) our all-sky sample provides data for nearly a quarter of the sky that is largely incomplete in optical cluster catalogues. We find that the direction of the Local Group's peculiar velocity is well aligned with the CMB as early as the Great Attractor region 40 h^-1 Mpc away, but that the amplitude of its dipole motion is largely set between 140 and 160 h^-1 Mpc. Unlike previous studies using galaxy samples, we find that without Virgo included, roughly ~70% of our dipole signal comes from mass concentrations at large distances (>60 h^-1 Mpc) and does not flatten, indicating isotropy in the cluster distribution, until at least 160 h^-1 Mpc. We also present a detailed discussion of our dipole profile, linking observed features to the structures and superclusters that produce them. We find that most of the dipole signal can be attributed to the Shapley supercluster centered at about 150 h^-1 Mpc and a handful of very massive individual clusters, some of which are newly discovered and lie well in the Zone of Avoidance.Comment: 15 Pages, 9 Figures. Accepted by Ap

    The ROSAT North Ecliptic Pole Survey: The X-ray Catalog

    Full text link
    The sky around the North Ecliptic Pole (NEP), at α\alpha(2000) = 18h00m00s^h00^m00^s, δ\delta(2000) = +66\degr33\arcmin39\arcsec, has the deepest exposure of the entire {\it ROSAT} All - Sky Survey (RASS). The NEP is an undistinguished region of moderate Galactic latitude, b=29\fdg8, and hence suitable for compiling statistical samples of both galactic and extragalactic objects. We have made such a compilation in the 80.6 deg2^2 region surrounding the NEP. Our sample fully exploits the properties of the RASS, since the only criteria for inclusion are source position and significance, and yields the deepest large solid angle contiguous sample of X-ray sources to date. We find 442 unique sources above a flux limit 2×1014 ergsc˜m2 s1\mathrm{\sim2\times10^{-14} ~ergs \~cm^{-2} ~s^{-1}} in the 0.5--2.0 keV band. In this paper we present the X-ray properties of these sources as determined from the RASS. These include positions, fluxes, spectral information in the form of hardness ratios, and angular sizes. Since we have performed a comprehensive optical identification program we also present the average X-ray properties of classes of objects typical of the X-ray sky at these flux levels. We discuss the use of the RASS to find clusters of galaxies based on their X-ray properties alone.Comment: 48 pages, 13 figures, accepted for ApJ Supp 162, 2006 (February issue

    Quenched Cold Accretion of a Large Scale Metal-Poor Filament due to Virial Shocking in the Halo of a Massive z=0.7 Galaxy

    Get PDF
    Using HST/COS/STIS and HIRES/Keck high-resolution spectra, we have studied a remarkable HI absorbing complex at z=0.672 toward the quasar Q1317+277. The HI absorption has a velocity spread of 1600 km/s, comprises 21 Voigt profile components, and resides at an impact parameter of D=58 kpc from a bright, high mass [log(M_vir/M_sun) ~ 13.7] elliptical galaxy that is deduced to have a 6 Gyr old, solar metallicity stellar population. Ionization models suggest the majority of the structure is cold gas surrounding a shock heated cloud that is kinematically adjacent to a multi-phase group of clouds with detected CIII, CIV and OVI absorption, suggestive of a conductive interface near the shock. The deduced metallicities are consistent with the moderate in situ enrichment relative to the levels observed in the z ~ 3 Ly-alpha forest. We interpret the HI complex as a metal-poor filamentary structure being shock heated as it accretes into the halo of the galaxy. The data support the scenario of an early formation period (z > 4) in which the galaxy was presumably fed by cold-mode gas accretion that was later quenched via virial shocking by the hot halo such that, by intermediate redshift, the cold filamentary accreting gas is continuing to be disrupted by shock heating. Thus, continued filamentary accretion is being mixed into the hot halo, indicating that the star formation of the galaxy will likely remain quenched. To date, the galaxy and the HI absorption complex provide some of the most compelling observational data supporting the theoretical picture in which accretion is virial shocked in the hot coronal halos of high mass galaxies.Comment: 20 pages, 9 figures, submitted to Ap

    The XMM Cluster Survey: Active Galactic Nuclei and Starburst Galaxies in XMMXCS J2215.9-1738 at z=1.46

    Get PDF
    We use Chandra X-ray and Spitzer infrared observations to explore the AGN and starburst populations of XMMXCS J2215.9-1738 at z=1.46, one of the most distant spectroscopically confirmed galaxy clusters known. The high resolution X-ray imaging reveals that the cluster emission is contaminated by point sources that were not resolved in XMM observations of the system, and have the effect of hardening the spectrum, leading to the previously reported temperature for this system being overestimated. From a joint spectroscopic analysis of the Chandra and XMM data, the cluster is found to have temperature T=4.1_-0.9^+0.6 keV and luminosity L_X=(2.92_-0.35^+0.24)x10^44 erg/s extrapolated to a radius of 2 Mpc. As a result of this revised analysis, the cluster is found to lie on the sigma_v-T relation, but the cluster remains less luminous than would be expected from self-similar evolution of the local L_X-T relation. Two of the newly discovered X-ray AGN are cluster members, while a third object, which is also a prominent 24 micron source, is found to have properties consistent with it being a high redshift, highly obscured object in the background. We find a total of eight >5 sigma 24 micron sources associated with cluster members (four spectroscopically confirmed, and four selected using photometric redshifts), and one additional 24 micron source with two possible optical/near-IR counterparts that may be associated with the cluster. Examining the IRAC colors of these sources, we find one object is likely to be an AGN. Assuming that the other 24 micron sources are powered by star formation, their infrared luminosities imply star formation rates ~100 M_sun/yr. We find that three of these sources are located at projected distances of <250 kpc from the cluster center, suggesting that a large amount of star formation may be taking place in the cluster core, in contrast to clusters at low redshift.Comment: Accepted for publication in ApJ, 16 pages, 10 figure

    The XMM Cluster Survey: X-ray analysis methodology

    Get PDF
    The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMM-Newton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. In this paper we describe the data processing methodology applied to the 5,776 XMM observations used to construct the current XCS source catalogue. A total of 3,675 > 4-sigma cluster candidates with > 50 background-subtracted X-ray counts are extracted from a total non-overlapping area suitable for cluster searching of 410 deg^2. Of these, 993 candidates are detected with > 300 background-subtracted X-ray photon counts, and we demonstrate that robust temperature measurements can be obtained down to this count limit. We describe in detail the automated pipelines used to perform the spectral and surface brightness fitting for these candidates, as well as to estimate redshifts from the X-ray data alone. A total of 587 (122) X-ray temperatures to a typical accuracy of < 40 (< 10) per cent have been measured to date. We also present the methodology adopted for determining the selection function of the survey, and show that the extended source detection algorithm is robust to a range of cluster morphologies by inserting mock clusters derived from hydrodynamical simulations into real XMM images. These tests show that the simple isothermal beta-profiles is sufficient to capture the essential details of the cluster population detected in the archival XMM observations. The redshift follow-up of the XCS cluster sample is presented in a companion paper, together with a first data release of 503 optically-confirmed clusters.Comment: MNRAS accepted, 45 pages, 38 figures. Our companion paper describing our optical analysis methodology and presenting a first set of confirmed clusters has now been submitted to MNRA

    The XMM Cluster Survey: Predicted overlap with the Planck Cluster Catalogue

    Get PDF
    We present a list of 15 clusters of galaxies, serendipitously detected by the XMM Cluster Survey (XCS), that have a high probability of detection by the Planck satellite. Three of them already appear in the Planck Early Sunyaev-Zel'dovich (ESZ) catalogue. The estimation of the Planck detection probability assumes the flat Lambda cold dark matter (LambdaCDM) cosmology most compatible with 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) data. It takes into account the XCS selection function and Planck sensitivity, as well as the covariance of the cluster X-ray luminosity, temperature, and integrated comptonization parameter, as a function of cluster mass and redshift, determined by the Millennium Gas Simulations. We also characterize the properties of the galaxy clusters in the final data release of the XCS that we expect Planck will have detected by the end of its extended mission. Finally, we briefly discuss possible joint applications of the XCS and Planck data.Comment: Closely matches the version accepted for publication by MNRAS, 7 pages, 3 figures. The XCS-DR1 catalogue, together with optical and X-ray (colour-composite and greyscale) images for each cluster, is publicly available from http://xcs-home.org/datarelease

    Early assembly of the most massive galaxies

    Get PDF
    The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 Gyrs after the Big Bang, having grown to more than 90% of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22% of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.Comment: Published in Nature 2nd April 2009. This astro ph version includes main text and supplementary material combine

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    corecore