15 research outputs found

    Development and preliminary testing of the psychosocial adjustment to hereditary diseases scale

    Get PDF
    Background: The presence of Lynch syndrome (LS) can bring a lifetime of uncertainty to an entire family as members adjust to living with a high lifetime cancer risk. The research base on how individuals and families adjust to genetic-linked diseases following predictive genetic testing has increased our understanding of short-term impacts but gaps continue to exist in knowledge of important factors that facilitate or impede long-term adjustment. The failure of existing scales to detect psychosocial adjustment challenges in this population has led researchers to question the adequate sensitivity of these instruments. Furthermore, we have limited insight into the role of the family in promoting adjustment. Methods: The purpose of this study was to develop and initially validate the Psychosocial Adjustment to Hereditary Diseases (PAHD) scale. This scale consists of two subscales, the Burden of Knowing (BK) and Family Connectedness (FC). Items for the two subscales were generated from a qualitative data base and tested in a sample of 243 participants from families with LS. Results: The Multitrait/Multi-Item Analysis Program-Revised (MAP-R) was used to evaluate the psychometric properties of the PAHD. The findings support the convergent and discriminant validity of the subscales. Construct validity was confirmed by factor analysis and Cronbach’s alpha supported a strong internal consistency for BK (0.83) and FC (0.84). Conclusion: Preliminary testing suggests that the PAHD is a psychometrically sound scale capable of assessing psychosocial adjustment. We conclude that the PAHD may be a valuable monitoring tool to identify individuals and families who may require therapeutic interventions

    Inhibition of apoptosis in neuronal cells infected with Chlamydophila (Chlamydia) pneumoniae

    Get PDF
    Background Chlamydophila (Chlamydia) pneumoniae is an intracellular bacterium that has been identified within cells in areas of neuropathology found in Alzheimer disease (AD), including endothelia, glia, and neurons. Depending on the cell type of the host, infection by C. pneumoniae has been shown to influence apoptotic pathways in both pro- and anti-apoptotic fashions. We have hypothesized that persistent chlamydial infection of neurons may be an important mediator of the characteristic neuropathology observed in AD brains. Chronic and/or persistent infection of neuronal cells with C. pneumoniae in the AD brain may affect apoptosis in cells containing chlamydial inclusions. Results SK-N-MC neuroblastoma cells were infected with the respiratory strain of C. pneumoniae, AR39 at an MOI of 1. Following infection, the cells were either untreated or treated with staurosporine and then examined for apoptosis by labeling for nuclear fragmentation, caspase activity, and membrane inversion as indicated by annexin V staining. C. pneumoniae infection was maintained through 10 days post-infection. At 3 and 10 days post-infection, the infected cell cultures appeared to inhibit or were resistant to the apoptotic process when induced by staurosporine. This inhibition was demonstrated quantitatively by nuclear profile counts and caspase 3/7 activity measurements. Conclusion These data suggest that C. pneumoniae can sustain a chronic infection in neuronal cells by interfering with apoptosis, which may contribute to chronic inflammation in the AD brai

    Lynch syndrome: barriers to and facilitators of screening and disease management

    Get PDF
    Background Lynch syndrome is a hereditary cancer with confirmed carriers at high risk for colorectal (CRC) and extracolonic cancers. The purpose of the current study was to develop a greater understanding of the factors influencing decisions about disease management post-genetic testing. Methods The study used a grounded theory approach to data collection and analysis as part of a multiphase project examining the psychosocial and behavioral impact of predictive DNA testing for Lynch syndrome. Individual and small group interviews were conducted with individuals from 10 families with the MSH2 intron 5 splice site mutation or exon 8 deletion. The data from confirmed carriers (n = 23) were subjected to re-analysis to identify key barriers to and/or facilitators of screening and disease management. Results Thematic analysis identified personal, health care provider and health care system factors as dominant barriers to and/or facilitators of managing Lynch syndrome. Person-centered factors reflect risk perceptions and decision-making, and enduring screening/disease management. The perceived knowledge and clinical management skills of health care providers also influenced participation in recommended protocols. The health care system barriers/facilitators are defined in terms of continuity of care and coordination of services among providers. Conclusions Individuals with Lynch syndrome often encounter multiple barriers to and facilitators of disease management that go beyond the individual to the provider and health care system levels. The current organization and implementation of health care services are inadequate. A coordinated system of local services capable of providing integrated, efficient health care and follow-up, populated by providers with knowledge of hereditary cancer, is necessary to maintain optimal health

    TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions

    Get PDF
    Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease

    A novel Alzheimer disease locus located near the gene encoding tau protein

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAPOE ε4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE ε4+ (10 352 cases and 9207 controls) and APOE ε4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE ε4 status. Suggestive associations (P<1 × 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE ε4+: 1250 cases and 536 controls; APOE ε4-: 718 cases and 1699 controls). Among APOE ε4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ε4+ subjects (CR1 and CLU) or APOE ε4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P≤1.3 × 10-8), frontal cortex (P≤1.3 × 10-9) and temporal cortex (P≤1.2 × 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 × 10-6) and temporal cortex (P=2.6 × 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE ε4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted

    Development and preliminary testing of the psychosocial adjustment to hereditary diseases scale

    No full text
    Abstract Background The presence of Lynch syndrome (LS) can bring a lifetime of uncertainty to an entire family as members adjust to living with a high lifetime cancer risk. The research base on how individuals and families adjust to genetic-linked diseases following predictive genetic testing has increased our understanding of short-term impacts but gaps continue to exist in knowledge of important factors that facilitate or impede long-term adjustment. The failure of existing scales to detect psychosocial adjustment challenges in this population has led researchers to question the adequate sensitivity of these instruments. Furthermore, we have limited insight into the role of the family in promoting adjustment. Methods The purpose of this study was to develop and initially validate the Psychosocial Adjustment to Hereditary Diseases (PAHD) scale. This scale consists of two subscales, the Burden of Knowing (BK) and Family Connectedness (FC). Items for the two subscales were generated from a qualitative data base and tested in a sample of 243 participants from families with LS. Results The Multitrait/Multi-Item Analysis Program-Revised (MAP-R) was used to evaluate the psychometric properties of the PAHD. The findings support the convergent and discriminant validity of the subscales. Construct validity was confirmed by factor analysis and Cronbach’s alpha supported a strong internal consistency for BK (0.83) and FC (0.84). Conclusion Preliminary testing suggests that the PAHD is a psychometrically sound scale capable of assessing psychosocial adjustment. We conclude that the PAHD may be a valuable monitoring tool to identify individuals and families who may require therapeutic interventions

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease.

    Get PDF
    We identified rare coding variants associated with Alzheimer's disease in a three-stage case-control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a whole-exome microarray. In stage 2, we tested associated variants (P < 1 × 10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, we used an additional 14,997 samples to test the most significant stage 2 associations (P < 5 × 10-8) using imputed genotypes. We observed three new genome-wide significant nonsynonymous variants associated with Alzheimer's disease: a protective variant in PLCG2 (rs72824905: p.Pro522Arg, P = 5.38 × 10-10, odds ratio (OR) = 0.68, minor allele frequency (MAF)cases = 0.0059, MAFcontrols = 0.0093), a risk variant in ABI3 (rs616338: p.Ser209Phe, P = 4.56 × 10-10, OR = 1.43, MAFcases = 0.011, MAFcontrols = 0.008), and a new genome-wide significant variant in TREM2 (rs143332484: p.Arg62His, P = 1.55 × 10-14, OR = 1.67, MAFcases = 0.0143, MAFcontrols = 0.0089), a known susceptibility gene for Alzheimer's disease. These protein-altering changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified risk genes in Alzheimer's disease. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to the development of Alzheimer's disease

    New insights into the genetic etiology of Alzheimer’s disease and related dementias

    No full text
    Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore