92 research outputs found

    Toward a Regional Classification to Provide a More Inclusive Examination of the Ocean Biogeochemistry of Iron-Binding Ligands

    Get PDF
    Iron-binding ligands are paramount to understanding iron biogeochemistry and its potential to set the productivity and the magnitude of the biological pump in >30% of the ocean. However, the nature of these ligands is largely uncharacterized and little is known about their sources, sensitivity to photochemistry and biological transformation, or scavenging behavior. Despite many uncertainties, there is no doubt that ligands are produced by a wide range of biotic and abiotic processes, and that the bulk ligand pool encompasses a diverse range of molecules. Despite widespread recognition of the likelihood of a continuum of ligand classes making up the bulk ligand pool, studies to date largely focused on the dominant ligand. Thus, most studies have overlooked the need to assess where these targeted molecules fit across the spectrum of ligands that comprise the bulk ligand pool. Here we summarize present knowledge to critically assess the source(s), function(s), production pathways, and loss mechanisms of three important iron-binding organic ligand groups in order to assess their distinctive characteristics and how they link with observed ligand distributions. We considered that ligands are contained in broad groupings of exopolymer substances (EPS), humic substances (HS), and siderophores; using literature data for speciation modeling suggested that this adequately described the iron speciation reported in the ocean. We hypothesize that a holistic viewpoint of the multi-faceted controls on ligands dynamics is essential to begin to understand why some ligands can be expected to dominate in particular oceanic regions, depth strata, or exhibit seasonality and/or lateral gradients. We advocate that the development of a regional classification will enhance our understanding of the changing composition of the bulk ligand pool across the global ocean and to help address to what extent seasonality influences the makeup of this pool. This classification, based on selected functional ligand classes, can act as a bridge to use future ligand datasets to fill in the gaps in the continuum

    Chromium stable isotope distributions in the southwest Pacific Ocean and constraints on hydrothermal input from the Kermadec Arc

    Get PDF
    Special attention has been given to chromium (Cr) as a paleoproxy tracing redox cycling throughout Earth’s history, due to differences in the solubility of its primary redox species at Earth’s surface (Cr (III) and Cr(VI)) and isotope fractionation associated with their interconversion. In turn, chromium’s pale- oproxy potential has motivated studies of the modern ocean to better understand which processes drive its cycling and to constrain their impact on the Cr isotope composition (d53Cr) of seawater. Here, we pre- sent total dissolved seawater Cr concentrations and d53Cr along the GEOTRACES GP13 section. This sec- tion is a zonal transect extending from Australia in the subtropical southwest Pacific Ocean. Surface signals of local biological Cr cycling are minimal, in agreement with distributions of dissolved major nutrients as well as biologically-controlled trace metals in this low productivity, oligotrophic environ- ment. Depth profiles have Cr concentration minima in surface waters and maxima at depth, and are lar- gely shaped by the advection of nutrient- and Cr-rich subsurface waters rather than vertically-driven processes. Samples close to the sediment–water interface indicate important benthic Cr fluxes across the section. The GP13 transect crosses the hydrothermally-active Kermadec Arc. Hydrothermal fluids (consisting of <15% background seawater) were collected from three venting sites at the Brothers Volcano (along the Kermadec Arc). These fluids yielded near-crustal d53Cr values (!0.17 to +0.08‰) and elevated [Cr] (7.5–23 nmol kg!1, hydrothermal endmember [Cr] % 8–27 nmol kg!1), indicating that the Kermadec Arc may be an isotopically light Cr source. Dissolved [Fe] enrichments have been reported previously in deep waters ($1600–3000 m) along the GP13 transect, east of the Kermadec Arc. These same waters show ele- vated [Cr] compared to Circumpolar Deep Water ([Cr] = 3.88 ± 0.11, d53Cr = 0.89 ± 0.08, n = 32), with an aver- age [Cr] accumulation of 0.71 ± 0.11 nmol kg!1 (1 SD), and an estimated d53Cr of +0.46 ± 0.30‰ (2 SD, n = 9) for the accumulated Cr. Comparing high-temperature vent and neutrally buoyant plume data, hydrothermal-sourced Cr is likely negligable compared to Cr contributions from other processes (benthic fluxes, release from particles), and the advection of more Cr-rich Pacific Deep Water. It is unlikely that hydrothermal vents would be a major contributor within the regional or global biogeochemical Cr cycle, even if hydrothermal fluxes change by orders of magnitude, and therefore d53Cr trends in the paleorecord may be attributable, at least in part, to major changes in other controls on Cr (e.g. widespread anoxia)

    Chromium Cycling in Redox‐Stratified Basins Challenges δ <sup>53</sup> Cr Paleoredox Proxy Applications

    Get PDF
    Chromium stable isotope composition (δ53Cr) is a promising tracer for redox conditions throughout Earth's history; however, the geochemical controls of δ53Cr have not been assessed in modern redox-stratified basins. We present new chromium (Cr) concentration and δ53Cr data in dissolved, sinking particulate, and sediment samples from the redox-stratified Lake Cadagno (Switzerland), a modern Proterozoic ocean analog. These data demonstrate isotope fractionation during incomplete (non-quantitative) reduction and removal of Cr above the chemocline, driving isotopically light Cr accumulation in euxinic deep waters. Sediment authigenic Cr is isotopically distinct from overlying waters but comparable to average continental crust. New and published data from other redox-stratified basins show analogous patterns. This challenges assumptions from δ53Cr paleoredox applications that quantitative Cr reduction and removal limits isotope fractionation. Instead, fractionation from non-quantitative Cr removal leads to sedimentary records offset from overlying waters and not reflecting high δ53Cr from oxidative continental weathering.ISSN:0094-8276ISSN:1944-800

    Insights Into the Biogeochemical Cycling of Iron, Nitrate, and Phosphate Across a 5,300 km South Pacific Zonal Section (153°E-150°W)

    Get PDF
    Iron, phosphate, and nitrate are essential nutrients for phytoplankton growth, and hence, their supply into the surface ocean controls oceanic primary production. Here we present a GEOTRACES zonal section (GP13; 30–33°S, 153°E–150°W) extending eastward from Australia to the oligotrophic South Pacific Ocean gyre outlining the concentrations of these key nutrients. Surface dissolved iron concentrations are elevated at >0.4 nmol L−1 near continental Australia (west of 165°E) and decreased eastward to ≤0.2 nmol L−1 (170°W–150°W). The supply of dissolved iron into the upper ocean (<100 m) from the atmosphere and vertical diffusivity averaged 11 ± 10 nmol m−2 d−1. In the remote South Pacific Ocean (170°W–150°W), atmospherically sourced iron is a significant contributor to the surface dissolved iron pool with average supply contribution of 23 ± 17% (range 3% to 55%). Surface water nitrate concentrations averaged 5 ± 4 nmol L−1 between 170°W and 150°W, while surface water phosphate concentrations averaged 58 ± 30 nmol L−1. The supply of nitrogen into the upper ocean is primarily from deeper waters (24–1647 μmol m−2 d−1) with atmospheric deposition and nitrogen fixation contributing <1% to the overall flux along the eastern part of the transect. The deep water N:P ratio averaged 14.5 ± 0.5 but declined to <1 above the deep chlorophyll maximum (DCM) indicating a high N:P assimilation ratio by phytoplankton leading to almost quantitative removal of nitrate. The supply stoichiometry for iron and nitrogen relative to phosphate at and above the DCM declines eastward leading to two biogeographical provinces: one with diazotroph production and the other without diazotroph production.This research was supported by the New Zealand Foundation for Research, Science and Technology Coasts and Oceans Outcome-Based Investment (COIX0501), and the Australian Research Council Discovery Projects (DP1092892 and DP110100108) and Future Fellowships (FT130100037) programs, University of Tasmania, internal grants to A. R. B. (refs B0018994, B0019024, and L0018934), and University of Technology Sydney Chancellor Fellowship to CSH

    Insights Into the Biogeochemical Cycling of Iron, Nitrate, and Phosphate Across a 5,300 km South Pacific Zonal Section (153°E–150°W)

    Get PDF
    Iron, phosphate and nitrate are essential nutrients for phytoplankton growth and hence their supply into the surface ocean controls oceanic primary production. Here, we present a GEOTRACES zonal section (GP13; 30-33oS, 153oE-150oW) extending eastwards from Australia to the oligotrophic South Pacific Ocean gyre outlining the concentrations of these key nutrients. Surface dissolved iron concentrations are elevated at >0.4 nmol L-1 near continental Australia (west of 165°E) and decreased eastward to ≤0.2 nmol L-1 (170oW-150oW). The supply of dissolved iron into the upper ocean (<100m) from the atmosphere and vertical diffusivity averaged 11 ±10 nmol m-2 d-1. In the remote South Pacific Ocean (170oW-150oW) atmospherically sourced iron is a significant contributor to the surface dissolved iron pool with average supply contribution of 23 ± 17% (range 3% to 55%). Surface-water nitrate concentrations averaged 5 ±4 nmol L-1 between 170oW and 150oW whilst surface-water phosphate concentrations averaged 58 ±30 nmol L-1. The supply of nitrogen into the upper ocean is primarily from deeper waters (24-1647 μmol m-2 d-1) with atmospheric deposition and nitrogen fixation contributing <1% to the overall flux, in remote South Pacific waters. The deep water N:P ratio averaged 16 ±3 but declined to <1 above the deep chlorophyll maximum (DCM) indicating a high N:P assimilation ratio by phytoplankton leading to almost quantitative removal of nitrate. The supply stoichiometry for iron and nitrogen relative to phosphate at and above the DCM declines eastward leading to two biogeographical provinces: one with diazotroph production and the other without diazotroph production

    Marine microbial metagenomes sampled across space and time

    Get PDF
    Recent advances in understanding the ecology of marine systems have been greatly facilitated by the growing availability of metagenomic data, which provide information on the identity, diversity and functional potential of the microbial community in a particular place and time. Here we present a dataset comprising over 5 terabases of metagenomic data from 610 samples spanning diverse regions of the Atlantic and Pacific Oceans. One set of metagenomes, collected on GEOTRACES cruises, captures large geographic transects at multiple depths per station. The second set represents two years of time-series data, collected at roughly monthly intervals from 3 depths at two long-term ocean sampling sites, Station ALOHA and BATS. These metagenomes contain genomic information from a diverse range of bacteria, archaea, eukaryotes and viruses. The data's utility is strengthened by the availability of extensive physical, chemical, and biological measurements associated with each sample. We expect that these metagenomes will facilitate a wide range of comparative studies that seek to illuminate new aspects of marine microbial ecosystems

    Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments

    Get PDF
    Prochlorococcus and Synechococcus are the dominant primary producers in marine ecosystems and perform a significant fraction of ocean carbon fixation. These cyanobacteria interact with a diverse microbial community that coexists with them. Comparative genomics of cultivated isolates has helped address questions regarding patterns of evolution and diversity among microbes, but the fraction that can be cultivated is miniscule compared to the diversity in the wild. To further probe the diversity of these groups and extend the utility of reference sequence databases, we report a data set of single cell genomes for 489 Prochlorococcus, 50 Synechococcus, 9 extracellular virus particles, and 190 additional microorganisms from a diverse range of bacterial, archaeal, and viral groups. Many of these uncultivated single cell genomes are derived from samples obtained on GEOTRACES cruises and at well-studied oceanographic stations, each with extensive suites of physical, chemical, and biological measurements. The genomic data reported here greatly increases the number of available Prochlorococcus genomes and will facilitate studies on evolutionary biology, microbial ecology, and biological oceanography
    corecore