81 research outputs found

    Secure NFV Orchestration Over an SDN-Controlled Optical Network With Time-Shared Quantum Key Distribution Resources

    Get PDF
    Quantum key distribution (QKD) is a state-of-the-art method of generating cryptographic keys by exchanging single photons. Measurements on the photons are constrained by the laws of quantum mechanics, and it is from this that the keys derive their security. Current public key encryption relies on mathematical problems that cannot be solved efficiently using present-day technologies; however, it is vulnerable to computational advances. In contrast QKD generates truly random keys secured against computational advances and more general attacks when implemented properly. On the other hand, networks are moving towards a process of softwarization with the main objective to reduce cost in both, the deployment and in the network maintenance. This process replaces traditional network functionalities (or even full network instances) typically performed in network devices to be located as software distributed across commodity data centers. Within this context, network function virtualization (NFV) is a new concept in which operations of current proprietary hardware appliances are decoupled and run as software instances. However, the security of NFV still needs to be addressed prior to deployment in the real world. In particular, virtual network function (VNF) distribution across data centers is a risk for network operators, as an eavesdropper could compromise not just virtualized services, but the whole infrastructure. We demonstrate, for the first time, a secure architectural solution for VNF distribution, combining NFV orchestration and QKD technology by scheduling an optical network using SDN. A time-shared approach is designed and presented as a cost-effective solution for practical deployment, showing the performance of different quantum links in a distributed environment

    The risk perceptions of individual investors

    Get PDF
    Risk perceptions of individual investors are studied by asking experimental questions to 2,226 members of a consumer panel. Their responses are analyzed in order to find which risk measures they implicitly use. We find that most investors implicitly use more than one risk measure. For those investors who systematically perceive risk according to the same risk measure, semi-variance of returns is most popular. Semi-variance is similar to variance, but only negative deviations fro the mean or another benchmark are taken into account. Stock investors implicitly choose for semi-variance as a risk measure, while bond investors favor probability of loss. Investors state that they consider the original investment to be the most important benchmark, followed by the risk-free rate of return, and the market return. However, their choices in the experimental questionnaire study reveal that the market return is the most important benchmark

    Funny walking : the rise, fall and rise of the Anglo-American comic eccentric dancer

    Get PDF
    This article will attempt to reposition comic eccentric dance as a metamorphic form that still, surprisingly, exists, and is to be found with reasonable ubiquity, in renewed incarna-tions within twenty first century media. Tracing the origins of comic eccentric dance through examples of earlier comedy performance, and drawing from Bergson’s comic theory of body misalliance, this article will dis-cuss this particularly ludic fusion of music and comedy. Further changes to the form affected by modernist preoccupations during the new Jazz Age at the turn of the twentieth century will be suggested. Finally, ways in which the formulation lives on in twenty-first century in-carnations in the comedy work of, for instance, Jimmy Fallon and Ricky Gervase, and in popular television shows such as Strictly Come Dancing (BBC 2004 - ) and Britain’s Got Talent (ITV 2006 - ) will be posited

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    On the priming of risk preferences : the role of fear and general affect

    Get PDF
    Priming is an established tool in psychology for investigating aspects of cognitive processes underlying decision making and is increasingly applied in economics. We report a systematic attempt to test the reproducibility and generalisability of priming effects on risk attitudes in a more diverse population than professionals and students, when priming using either a positive or a negative experience. We further test fear as the causal mechanism underlying countercyclical risk aversion. Across a series of experiments with a total sample of over 1900 participants, we are unable to find any systematic effect of priming on risk preferences. Moreover, our results challenge the role of fear as the mechanism underlying countercyclical risk aversion; we find evidence of an impact of general affect such that the better our participants feel, the more risk they take

    Creative learning environments in education-A systematic literature review

    Get PDF
    This paper reports on a systematic review of 210 pieces of educational research, policy and professional literature relating to creative environments for learning in schools, commissioned by Learning and Teaching Scotland (LTS). Despite the volume of academic literature in this field, the team of six reviewers found comparatively few empirical studies published in the period 2005–2011 providing findings addressing the review objectives. There was, however a reasonable weight of research evidence to support the importance of the following factors in supporting creative skills development in children and young people: flexible use of space and time; availability of appropriate materials; working outside the classroom/school; ‘playful’ or ‘games-bases’ approaches with a degree of learner autonomy; respectful relationships between teachers and learners; opportunities for peer collaboration; partnerships with outside agencies; awareness of learners’ needs; and non-prescriptive planning. The review also found evidence for impact of creative environments on pupil attainment and the development of teacher professionalism. LTS intend to use the review as a basis for recommendations to Scottish schools in promoting creativity within Curriculum for Excellence. However, the findings of the review and methodological gaps in the reviewed studies have implications for policy, practice and research internationally

    Polymorphisms near TBX5 and GDF7 are associated with increased risk for Barrett's esophagus.

    Get PDF
    BACKGROUND & AIMS: Barrett's esophagus (BE) increases the risk of esophageal adenocarcinoma (EAC). We found the risk to be BE has been associated with single nucleotide polymorphisms (SNPs) on chromosome 6p21 (within the HLA region) and on 16q23, where the closest protein-coding gene is FOXF1. Subsequently, the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON) identified risk loci for BE and esophageal adenocarcinoma near CRTC1 and BARX1, and within 100 kb of FOXP1. We aimed to identify further SNPs that increased BE risk and to validate previously reported associations. METHODS: We performed a genome-wide association study (GWAS) to identify variants associated with BE and further analyzed promising variants identified by BEACON by genotyping 10,158 patients with BE and 21,062 controls. RESULTS: We identified 2 SNPs not previously associated with BE: rs3072 (2p24.1; odds ratio [OR] = 1.14; 95% CI: 1.09-1.18; P = 1.8 × 10(-11)) and rs2701108 (12q24.21; OR = 0.90; 95% CI: 0.86-0.93; P = 7.5 × 10(-9)). The closest protein-coding genes were respectively GDF7 (rs3072), which encodes a ligand in the bone morphogenetic protein pathway, and TBX5 (rs2701108), which encodes a transcription factor that regulates esophageal and cardiac development. Our data also supported in BE cases 3 risk SNPs identified by BEACON (rs2687201, rs11789015, and rs10423674). Meta-analysis of all data identified another SNP associated with BE and esophageal adenocarcinoma: rs3784262, within ALDH1A2 (OR = 0.90; 95% CI: 0.87-0.93; P = 3.72 × 10(-9)). CONCLUSIONS: We identified 2 loci associated with risk of BE and provided data to support a further locus. The genes we found to be associated with risk for BE encode transcription factors involved in thoracic, diaphragmatic, and esophageal development or proteins involved in the inflammatory response

    The Zero Emissions Commitment and climate stabilization

    Get PDF
    How do we halt global warming? Reaching net zero carbon dioxide (CO2) emissions is understood to be a key milestone on the path to a safer planet. But how confident are we that when we stop carbon emissions, we also stop global warming? The Zero Emissions Commitment (ZEC) quantifies how much warming or cooling we can expect following a complete cessation of anthropogenic CO2 emissions. To date, the best estimate by the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report is zero change, though with substantial uncertainty. In this article, we present an overview of the changes expected in major Earth system processes after net zero and their potential impact on global surface temperature, providing an outlook toward building a more confident assessment of ZEC in the decades to come. We propose a structure to guide research into ZEC and associated changes in the climate, separating the impacts expected over decades, centuries, and millennia. As we look ahead at the century billed to mark the end of net anthropogenic CO2 emissions, we ask: what is the prospect of a stable climate in a post-net zero world?</jats:p
    • …
    corecore