94 research outputs found

    Caspase-generated fragment of the Met receptor favors apoptosis via the intrinsic pathway independently of its tyrosine kinase activity

    Get PDF
    The receptor tyrosine kinase Met and its ligand, the hepatocyte growth factor, are essential to embryonic development, whereas the deregulation of Met signaling is associated with tumorigenesis. While ligand-activated Met promotes survival, caspase-dependent generation of the p40 Met fragment leads to apoptosis induction – hallmark of the dependence receptor. Although the survival signaling pathways induced by Met are well described, the pro-apoptotic signaling pathways are unknown. We show that, although p40 Met contains the entire kinase domain, it accelerates apoptosis independently of kinase activity. In cell cultures undergoing apoptosis, the fragment shows a mitochondrial localization, required for p40 Met-induced cell death. Fulminant hepatic failure induced in mice leads to the generation of p40 Met localized also in the mitochondria, demonstrating caspase cleavage of Met in vivo. According to its localization, the fragment induces mitochondrial permeabilization, which is inhibited by Bak silencing and Bcl-xL overexpression. Moreover, Met silencing delays mitochondrial permeabilization induced by an apoptotic treatment. Thus, the Met-dependence receptor in addition to its well-known role in survival signaling mediated by its kinase activity, also participates in the intrinsic apoptosis pathway through the generation of p40 Met – a caspase-dependent fragment of Met implicated in the mitochondrial permeabilization process

    Recent advances in the structural molecular biology of Ets transcription factors: interactions, interfaces and inhibition

    Get PDF
    The Ets family of eukaryotic transcription factors is based around the conserved Ets DNA-binding domain. Although their DNA-binding selectivity is biochemically and structurally well characterized, structures of homodimeric and ternary complexes point to Ets domains functioning as versatile protein-interaction modules. In the present paper, we review the progress made over the last decade to elucidate the structural mechanisms involved in modulation of DNA binding and protein partner selection during dimerization. We see that Ets domains, although conserved around a core architecture, have evolved to utilize a variety of interaction surfaces and binding mechanisms, reflecting Ets domains as dynamic interfaces for both DNA and protein interaction. Furthermore, we discuss recent advances in drug development for inhibition of Ets factors, and the roles structural biology can play in their future

    Structures of the Ets Protein DNA-binding Domains of Transcription Factors Etv1, Etv4, Etv5, and Fev: Determinants of DNA Binding and Redox Regulation by Disulfide Bond Formation.

    Get PDF
    Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis. Ets DNA binding, selectivity, and regulation have been extensively studied; however, questions still arise regarding binding specificity outside the core GGA recognition sequence and the mode of action of Ets post-translational modifications. Here, we report the crystal structures of Etv1, Etv4, Etv5, and Fev, alone and in complex with DNA. We identify previously unrecognized features of the protein-DNA interface. Interactions with the DNA backbone account for most of the binding affinity. We describe a highly coordinated network of water molecules acting in base selection upstream of the GGAA core and the structural features that may account for discrimination against methylated cytidine residues. Unexpectedly, all proteins crystallized as disulfide-linked dimers, exhibiting a novel interface (distant to the DNA recognition helix). Homodimers of Etv1, Etv4, and Etv5 could be reduced to monomers, leading to a 40-200-fold increase in DNA binding affinity. Hence, we present the first indication of a redox-dependent regulatory mechanism that may control the activity of this subset of oncogenic Ets transcription factors

    Retinoic Acid-Dependent Signaling Pathways and Lineage Events in the Developing Mouse Spinal Cord

    Get PDF
    Studies in avian models have demonstrated an involvement of retinoid signaling in early neural tube patterning. The roles of this signaling pathway at later stages of spinal cord development are only partly characterized. Here we use Raldh2-null mouse mutants rescued from early embryonic lethality to study the consequences of lack of endogenous retinoic acid (RA) in the differentiating spinal cord. Mid-gestation RA deficiency produces prominent structural and molecular deficiencies in dorsal regions of the spinal cord. While targets of Wnt signaling in the dorsal neuronal lineage are unaltered, reductions in Fibroblast Growth Factor (FGF) and Notch signaling are clearly observed. We further provide evidence that endogenous RA is capable of driving stem cell differentiation. Raldh2 deficiency results in a decreased number of spinal cord derived neurospheres, which exhibit a reduced differentiation potential. Raldh2-null neurospheres have a decreased number of cells expressing the neuronal marker β-III-tubulin, while the nestin-positive cell population is increased. Hence, in vivo retinoid deficiency impaired neural stem cell growth. We propose that RA has separable functions in the developing spinal cord to (i) maintain high levels of FGF and Notch signaling and (ii) drive stem cell differentiation, thus restricting both the numbers and the pluripotent character of neural stem cells

    FGFR3 – a Central Player in Bladder Cancer Pathogenesis?

    Get PDF
    The identification of mutations in FGFR3 in bladder tumors in 1999 led to major interest in this receptor and during the subsequent 20 years much has been learnt about the mutational profiles found in bladder cancer, the phenotypes associated with these and the potential of this mutated protein as a target for therapy. Based on mutational and expression data, it is estimated that >80% of non-muscle-invasive bladder cancers (NMIBC) and ∼40% of muscle-invasive bladder cancers (MIBC) have upregulated FGFR3 signalling, and these frequencies are likely to be even higher if alternative splicing of the receptor, expression of ligands and changes in regulatory mechanisms are taken into account. Major efforts by the pharmaceutical industry have led to development of a range of agents targeting FGFR3 and other FGF receptors. Several of these have entered clinical trials, and some have presented very encouraging early results in advanced bladder cancer. Recent reviews have summarised the drugs and related clinical trials in this area. This review will summarise what is known about the effects of FGFR3 and its mutant forms in normal urothelium and bladder tumors, will suggest when and how this protein contributes to urothelial cancer pathogenesis and will highlight areas that may benefit from further study

    Expression of the ETS transcription factorER81 in the developing chick and mouse hindbrain

    No full text
    ER81 is an ETS domain-containing transcription factor, which is expressed in various developing tissues and organs of the embryo and in pools of developing spinal motor neurons and proprioceptive sensory neurons. Analysis of mice lacking ER81 function showed that this gene played an important role in the establishment of sensory-motor circuitry in the spinal cord. Here, we investigate the expression pattern of er81 in the hindbrain of both chick and mouse embryos. We find that er81 is expressed in a subpopulation. of inferior olive neurons, which send their projections to the caudal cerebellum

    Pea3 transcription factor cooperates with USF-1 in regulation of the murine bax transcription without binding to an Ets-binding site

    No full text
    The Pea3 transcription factor (which belongs to the PEA3 group) from the Ets family has been shown to be involved in mammary embryogenesis and oncogenesis. However, except for proteinases, only few of its target genes have been reported. In the present report, we identified bax as a Pea3 up-regulated gene. We provide evidence of this regulation by using Pea3 overexpression and Pea3 silencing in a mammary cell line. Both Pea3 and Erm, another member of the PEA3 group, are able to transactivate bax promoter fragments. Although the minimal Pea3-regulated bax promoter does not contain an Ets-binding site, two functional upstream stimulatory factor-regulated E boxes are present. We further demonstrate the ability of Pea3 and USF-1 to cooperate for the transactivation of the bax promoter, mutation of the E boxes dramatically reducing the Pea3 transactivation potential. Although Pea3 did not directly bind to the minimal bax promoter, we provide evidence that USF-1 could form a ternary complex with Pea3 and DNA. Taken together, our results suggest that Pea3 may regulate bax transcription via the interaction with USF-1 but without binding to DNA.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    PEA3 transcription factors are expressed in tissues undergoing branching morphogenesis and promote formation of duct-like structures by mammary epithelial cells in vitro

    Get PDF
    The genetic program that controls reciprocal tissue interactions during epithelial organogenesis is still poorly understood. Erm, Er81 and Pea3 are three highly related transcription factors belonging to the Ets family, within which they form the PEA3 group. Little information is yet available regarding the function of these transcription factors. We have previously used in situ hybridization to compare their expression pattern during critical stages of murine embryogenesis [Oncogene 15 (1997), 937; Mech. Dev. 108 (2001), 191]. In this study, we have examined the expression of PEA3 group members during organogenesis of the lung, salivary gland, kidney, and mammary gland. In all of these developmental settings, we observed a tight correlation between branching morphogenesis and the expression of specific members of the PEA3 group. To assess the functional relevance of these findings, Erm and Pea3 were overexpressed in the TAC-2.1 mammary epithelial cell line, which has the ability to form branching duct-like structures when grown in collagen gels. We found that overexpression of Erm and Pea3 markedly enhances branching tubulogenesis of TAC-2.1 cells and also promotes their invasion into a collagen matrix. Collectively, these findings suggest that the differential expression of PEA3 group transcription factors has an important role in the regulation of branching morphogenesis and raise the question of their implication in branching signaling. © 2003 Elsevier Science (USA). All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore