53 research outputs found

    Transformations between 2MASS, SDSS and BVRI photometric systems: bridging the near infrared and optical

    Get PDF
    We present colour transformations for the conversion of the {\em 2MASS} photometric system to the Johnson-Cousins UBVRIUBVRI system and further into the {\em SDSS} ugrizugriz system. We have taken {\em SDSS} grigri magnitudes of stars measured with the 2.5-m telescope from SDSSSDSS Data Release 5 (DR5), and BVRIBVRI and JHKsJHK_{s} magnitudes from Stetson's catalogue and \citet{Cu03}, respectively. We matched thousands of stars in the three photometric systems by their coordinates and obtained a homogeneous sample of 825 stars by the following constraints, which are not used in previous transformations: 1) the data are de-reddened, 2) giants are omitted, and 3) the sample stars selected are of the highest quality. We give metallicity, population type, and transformations dependent on two colours. The transformations provide absolute magnitude and distance determinations which can be used in space density evaluations at short distances where some or all of the {\em SDSS} ugrizugriz magnitudes are saturated. The combination of these densities with those evaluated at larger distances using {\em SDSS} ugrizugriz photometry will supply accurate Galactic model parameters, particularly the local space densities for each population.Comment: 11 pages, including 10 figures and 7 tables, accepted for publication in MNRA

    The ALHAMBRA photometric system

    Get PDF
    This paper presents the characterization of the optical range of the ALHAMBRA photometric system, a 20 contiguous, equal-width, medium-band CCD system with wavelength coverage from 3500A to 9700A. The photometric description of the system is done by presenting the full response curve as a product of the filters, CCD and atmospheric transmission curves, and using some first and second order moments of this response function. We also introduce the set of standard stars that defines the system, formed by 31 classic spectrophotometric standard stars which have been used in the calibration of other known photometric systems, and 288 stars, flux calibrated homogeneously, from the Next Generation Spectral Library (NGSL). Based on the NGSL, we determine the transformation equations between Sloan Digital Sky Survey (SDSS) ugriz photometry and the ALHAMBRA photometric system, in order to establish some relations between both systems. Finally we develop and discuss a strategy to calculate the photometric zero points of the different pointings in the ALHAMBRA project.Comment: Astronomical Journal on the 14th of January 201

    A Revised Broad-Line Region Radius and Black Hole Mass for the Narrow-Line Seyfert 1 NGC 4051

    Get PDF
    We present the first results from a high sampling rate, multi-month reverberation mapping campaign undertaken primarily at MDM Observatory with supporting observations from telescopes around the world. The primary goal of this campaign was to obtain either new or improved Hbeta reverberation lag measurements for several relatively low luminosity AGNs. We feature results for NGC 4051 here because, until now, this object has been a significant outlier from AGN scaling relationships, e.g., it was previously a ~2-3sigma outlier on the relationship between the broad-line region (BLR) radius and the optical continuum luminosity - the R_BLR-L relationship. Our new measurements of the lag time between variations in the continuum and Hbeta emission line made from spectroscopic monitoring of NGC 4051 lead to a measured BLR radius of R_BLR = 1.87 (+0.54 -0.50) light days and black hole mass of M_BH = 1.73 (+0.55 -0.52) x 10^6 M_sun. This radius is consistent with that expected from the R_BLR-L relationship, based on the present luminosity of NGC 4051 and the most current calibration of the relation by Bentz et al. (2009a). We also present a preliminary look at velocity-resolved Hbeta light curves and time delay measurements, although we are unable to reconstruct an unambiguous velocity-resolved reverberation signal.Comment: 38 pages, 7 figures, accepted for publication in ApJ, changes from v1 reflect suggestions from anonymous refere

    Disk-Jet Connection in the Radio Galaxy 3C 120

    Get PDF
    We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 120 between 2002 and 2007 at X-ray, optical, and radio wave bands, as well as imaging with the Very Long Baseline Array (VLBA). Over the 5 yr of observation, significant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. Consistent with this, the X-ray flux and 37 GHz flux are anti-correlated with X-ray leading the radio variations. This implies that, in this radio galaxy, the radiative state of accretion disk plus corona system, where the X-rays are produced, has a direct effect on the events in the jet, where the radio emission originates. The X-ray power spectral density of 3C 120 shows a break, with steeper slope at shorter timescale and the break timescale is commensurate with the mass of the central black hole based on observations of Seyfert galaxies and black hole X-ray binaries. These findings provide support for the paradigm that black hole X-ray binaries and active galactic nuclei are fundamentally similar systems, with characteristic time and size scales linearly proportional to the mass of the central black hole. The X-ray and optical variations are strongly correlated in 3C 120, which implies that the optical emission in this object arises from the same general region as the X-rays, i.e., in the accretion disk-corona system. We numerically model multi-wavelength light curves of 3C 120 from such a system with the optical-UV emission produced in the disk and the X-rays generated by scattering of thermal photons by hot electrons in the corona. From the comparison of the temporal properties of the model light curves to that of the observed variability, we constrain the physical size of the corona and the distances of the emitting regions from the central BH.Comment: Accepted for publication in the Astrophysical Journal. 28 pages, 21 figures, 2 table

    The Clinical Genome Resource (ClinGen) Familial Hypercholesterolemia Variant Curation Expert Panel consensus guidelines for LDLR variant classification

    Get PDF
    PURPOSE: In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published consensus standardized guidelines for sequence-level variant classification in Mendelian disorders. To increase accuracy and consistency, the Clinical Genome Resource Familial Hypercholesterolemia (FH) Variant Curation Expert Panel was tasked with optimizing the existing ACMG/AMP framework for disease-specific classification in FH. In this study, we provide consensus recommendations for the most common FH-associated gene, LDLR, where >2300 unique FH-associated variants have been identified. METHODS: The multidisciplinary FH Variant Curation Expert Panel met in person and through frequent emails and conference calls to develop LDLR-specific modifications of ACMG/AMP guidelines. Through iteration, pilot testing, debate, and commentary, consensus among experts was reached. RESULTS: The consensus LDLR variant modifications to existing ACMG/AMP guidelines include (1) alteration of population frequency thresholds, (2) delineation of loss-of-function variant types, (3) functional study criteria specifications, (4) cosegregation criteria specifications, and (5) specific use and thresholds for in silico prediction tools, among others. CONCLUSION: Establishment of these guidelines as the new standard in the clinical laboratory setting will result in a more evidence-based, harmonized method for LDLR variant classification worldwide, thereby improving the care of patients with FH

    Variability of the blazar 4C 38.41 (B3 1633+382) from GHz frequencies to GeV energies

    Get PDF
    The quasar-type blazar 4C 38.41 (B3 1633+382) experienced a large outburst in 2011, which was detected throughout the entire electromagnetic spectrum. We present the results of low-energy multifrequency monitoring by the GASP project of the WEBT consortium and collaborators, as well as those of spectropolarimetric/spectrophotometric monitoring at the Steward Observatory. We also analyse high-energy observations of the Swift and Fermi satellites. In the optical-UV band, several results indicate that there is a contribution from a QSO-like emission component, in addition to both variable and polarised jet emission. The unpolarised emission component is likely thermal radiation from the accretion disc that dilutes the jet polarisation. We estimate its brightness to be R(QSO) ~ 17.85 - 18 and derive the intrinsic jet polarisation degree. We find no clear correlation between the optical and radio light curves, while the correlation between the optical and \gamma-ray flux apparently fades in time, likely because of an increasing optical to \gamma-ray flux ratio. As suggested for other blazars, the long-term variability of 4C 38.41 can be interpreted in terms of an inhomogeneous bent jet, where different emitting regions can change their alignment with respect to the line of sight, leading to variations in the Doppler factor \delta. Under the hypothesis that in the period 2008-2011 all the \gamma-ray and optical variability on a one-week timescale were due to changes in \delta, this would range between ~ 7 and ~ 21. If the variability were caused by changes in the viewing angle \theta\ only, then \theta\ would go from ~ 2.6 degr to ~ 5 degr. Variations in the viewing angle would also account for the dependence of the polarisation degree on the source brightness in the framework of a shock-in-jet model.Comment: 19 pages, 23 figures, in press for Astronomy and Astrophysic

    The Science Performance of JWST as Characterized in Commissioning

    Get PDF
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star

    Get PDF
    Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining1. Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability2,3,4,5. That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required

    The James Webb Space Telescope Mission: Optical Telescope Element Design, Development, and Performance

    Full text link
    The James Webb Space Telescope (JWST) is a large, infrared space telescope that has recently started its science program which will enable breakthroughs in astrophysics and planetary science. Notably, JWST will provide the very first observations of the earliest luminous objects in the Universe and start a new era of exoplanet atmospheric characterization. This transformative science is enabled by a 6.6 m telescope that is passively cooled with a 5-layer sunshield. The primary mirror is comprised of 18 controllable, low areal density hexagonal segments, that were aligned and phased relative to each other in orbit using innovative image-based wavefront sensing and control algorithms. This revolutionary telescope took more than two decades to develop with a widely distributed team across engineering disciplines. We present an overview of the telescope requirements, architecture, development, superb on-orbit performance, and lessons learned. JWST successfully demonstrates a segmented aperture space telescope and establishes a path to building even larger space telescopes.Comment: accepted by PASP for JWST Overview Special Issue; 34 pages, 25 figure

    Transformations between 2MASS, SDSS and BVRI photometric systems: bridging the near-infrared and optical

    No full text
    We present colour transformations for the conversion of the Two Micron All Sky Survey (2MASS) photometric system to the Johnson-Cousins UBVRI system and further into the Sloan Digital Sky Survey (SDSS) ugriz system. We have taken SDSS gri magnitudes of stars measured with the 2.5-m telescope from SDSS Data Release 5 (DR5), and BVRI and JHK(s) magnitudes from Stetson's catalogue and Cutri et al., respectively. We matched thousands of stars in the three photometric systems by their coordinates and obtained a homogeneous sample of 825 stars by the following constraints, which are not used in previous transformations: (1) the data are dereddened, (2) giants are omitted and (3) the sample stars selected are of the highest quality. We give metallicity, population type and transformations dependent on two colours. The transformations provide absolute magnitude and distance determinations which can be used in space density evaluations at short distances where some or all of the SDSS ugriz magnitudes are saturated. The combination of these densities with those evaluated at larger distances using SDSS ugriz photometry will supply accurate Galactic model parameters, particularly the local space densities for each population
    • …
    corecore