66 research outputs found
Admission rates and clinical profiles of children and youth with eating disorders treated as inpatients before and during the COVID-19 pandemic in a German university hospital
IntroductionChildren and youth at risk for mental health disorders, such as eating disorders (ED), were particularly affected by the COVID-19 pandemic, yet evidence for the most seriously affected and thus hospitalized youth in Germany is scarce.MethodsThis crosssectional study investigated anonymized routine hospital data (demographic information, diagnoses, treatment modalities) of patients admitted (n = 2,849) to the Department of Child and Adolescence Psychiatry, Psychosomatics and Psychotherapy (DCAPPP) of a German University Hospital between 01/2016 and 02/2022. Absolute and relative number of inpatients with or without ED prior to (01/2016–02/2020) and during the COVID-19 pandemic (03/2020–02/2022) were compared. The effect of school closures as part of social lockdown measures for COVID-19 mitigation on inpatient admission rate was explored as it has been discussed as a potential risk factor for mental health problems in youth.ResultsDuring the COVID-19 pandemic, ED inpatient admission rate increased from 10.5 to 16.7%, primarily driven by Anorexia Nervosa (AN). In contrast to previous reports, we found no change in somatic and mental disorder comorbidity, age or sexratio for hospitalized youth with ED. However, we did observe a shortened length of hospital stay (LOS) for hospitalized youth with and without ED. In addition, non-ED admissions presented with an increased number of mental disorder comorbidities. In contrast to our hypothesis, school closures were not related to the observed increase in ED.DiscussionIn summary, the COVID-19 pandemic was associated with an increased rate of inpatient treatment for youth suffering from AN, and of youth affected by multiple mental disorders. Accordingly, we assume that inpatient admission was prioritized for individuals with a higher burden of disease during the COVID-19 pandemic. Our findings pinpoint the need for adequate inpatient mental health treatment capacities during environmental crises, and a further strengthening of child and adolescence psychiatry services in Germany
Neuroendocrine Stress Response in Female and Male Youths With Conduct Disorder and Associations With Early Adversity
Objective: Conduct disorder (CD) involves aggressive and antisocial behavior and is associated with blunted cortisol stress response in male youths. Far less is known about cortisol stress responsivity in female youths with CD or other neuroendocrine responses in both sexes. Although CD is linked to early adversity, the possibility that neuroendocrine alterations may mediate the relationship between early adversity and CD has not been systematically investigated. Method: Within the European FemNAT-CD multi-site study, salivary cortisol, testosterone, the testosterone/cortisol ratio, oxytocin, and psychological stress response to a standardized psychosocial stress test (the Trier Social Stress Test [TSST]), together with common pre- and postnatal environmental risk factors, were investigated in 130 pubertal youths with CD (63% female, 9-18 years of age) and 160 sex-, age-, and puberty-matched healthy controls (HCs). Results: The TSST induced psychological stress in both CD and HCs. In contrast, female and male youths with CD showed blunted cortisol, testosterone, oxytocin, and testosterone/cortisol stress responses compared to HCs. These blunted stress responses partly mediated the relationship between environmental risk factors and CD. Conclusion: Findings from this unique sample, including many female youths with CD, provide evidence for a widespread attenuated stress responsivity of not only stress hormones, but also sex hormones and neuropeptides in CD and its subgroups (eg, with limited prosocial emotions). Results are the first to demonstrate blunted neuroendocrine stress responses in both female and male youths with CD. Early adversity may alter neuroendocrine stress responsivity. Biological mechanisms should be investigated further to pave the way for personalized intervention, thereby improving treatments for CD.</p
Involvement of the 14-3-3 gene family in autism spectrum disorder and schizophrenia: Genetics, transcriptomics and functional analyses
The 14-3-3 protein family are molecular chaperones involved in several biological functions and neurological diseases. We previously pinpointed YWHAZ (encoding 14-3-3ζ) as a candidate gene for autism spectrum disorder (ASD) through a whole-exome sequencing study, which identified a frameshift variant within the gene (c.659-660insT, p.L220Ffs*18). Here, we explored the contribution of the seven human 14-3-3 family members in ASD and other psychiatric disorders by investigating the: (i) functional impact of the 14-3-3ζ mutation p.L220Ffs*18 by assessing solubility, target binding and dimerization; (ii) contribution of common risk variants in 14-3-3 genes to ASD and additional psychiatric disorders; (iii) burden of rare variants in ASD and schizophrenia; and iv) 14-3-3 gene expression using ASD and schizophrenia transcriptomic data. We found that the mutant 14-3-3ζ protein had decreased solubility and lost its ability to form heterodimers and bind to its target tyrosine hydroxylase. Gene-based analyses using publicly available datasets revealed that common variants in YWHAE contribute to schizophrenia (p = 6.6 × 10-7), whereas ultra-rare variants were found enriched in ASD across the 14-3-3 genes (p = 0.017) and in schizophrenia for YWHAZ (meta-p = 0.017). Furthermore, expression of 14-3-3 genes was altered in post-mortem brains of ASD and schizophrenia patients. Our study supports a role for the 14-3-3 family in ASD and schizophrenia
Loss of the Chr16p11.2 ASD candidate gene QPRT leads to aberrant neuronal differentiation in the SH-SY5Y neuronal cell model
Background: Altered neuronal development is discussed as the underlying pathogenic mechanism of autism spectrum disorders (ASD). Copy number variations of 16p11.2 have recurrently been identified in individuals with ASD. Of the 29 genes within this region, quinolinate phosphoribosyltransferase (QPRT) showed the strongest regulation during neuronal differentiation of SH-SY5Y neuroblastoma cells. We hypothesized a causal relation between this tryptophan metabolism-related enzyme and neuronal differentiation. We thus analyzed the effect of QPRT on the differentiation of SH-SY5Y and specifically focused on neuronal morphology, metabolites of the tryptophan pathway, and the neurodevelopmental transcriptome.
Methods: The gene dosage-dependent change of QPRT expression following Chr16p11.2 deletion was investigated in a lymphoblastoid cell line (LCL) of a deletion carrier and compared to his non-carrier parents. Expression of QPRT was tested for correlation with neuromorphology in SH-SY5Y cells. QPRT function was inhibited in SH-SY5Y neuroblastoma cells using (i) siRNA knockdown (KD), (ii) chemical mimicking of loss of QPRT, and (iii) complete CRISPR/Cas9-mediated knock out (KO). QPRT-KD cells underwent morphological analysis. Chemically inhibited and QPRT-KO cells were characterized using viability assays. Additionally, QPRT-KO cells underwent metabolite and whole transcriptome analyses. Genes differentially expressed upon KO of QPRT were tested for enrichment in biological processes and co-regulated gene-networks of the human brain.
Results: QPRT expression was reduced in the LCL of the deletion carrier and significantly correlated with the neuritic complexity of SH-SY5Y. The reduction of QPRT altered neuronal morphology of differentiated SH-SY5Y cells. Chemical inhibition as well as complete KO of the gene were lethal upon induction of neuronal differentiation, but not proliferation. The QPRT-associated tryptophan pathway was not affected by KO. At the transcriptome level, genes linked to neurodevelopmental processes and synaptic structures were affected. Differentially regulated genes were enriched for ASD candidates, and co-regulated gene networks were implicated in the development of the dorsolateral prefrontal cortex, the hippocampus, and the amygdala.
Conclusions: In this study, QPRT was causally related to in vitro neuronal differentiation of SH-SY5Y cells and affected the regulation of genes and gene networks previously implicated in ASD. Thus, our data suggest that QPRT may play an important role in the pathogenesis of ASD in Chr16p11.2 deletion carriers
DNA methylation signatures of aggression and closely related constructs : A meta-analysis of epigenome-wide studies across the lifespan
DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N = 15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha = 1.2 x 10(-7); Bonferroni correction). In cord blood samples of 2425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression (r = 0.74, p = 0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripheral blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range = 3-82%) of the aggression-methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.Peer reviewe
Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder
We systematically analyzed postzygotic mutations (PZMs) in whole-exome sequences from the largest collection of trios (5,947) with autism spectrum disorder (ASD) available, including 282 unpublished trios, and performed resequencing using multiple independent technologies. We identified 7.5% of de novo mutations as PZMs, 83.3% of which were not described in previous studies. Damaging, nonsynonymous PZMs within critical exons of prenatally expressed genes were more common in ASD probands than controls (P < 1 Ã 10-6), and genes carrying these PZMs were enriched for expression in the amygdala (P = 5.4 Ã 10-3). Two genes (KLF16 and MSANTD2) were significantly enriched for PZMs genome-wide, and other PZMs involved genes (SCN2A, HNRNPU and SMARCA4) whose mutation is known to cause ASD or other neurodevelopmental disorders. PZMs constitute a significant proportion of de novo mutations and contribute importantly to ASD risk
DNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan
DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N = 15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha = 1.2 × 10-7; Bonferroni correction). In cord blood samples of 2425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression (r = 0.74, p = 0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripheral blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range = 3-82%) of the aggression-methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.</p
Genetic risk factors and their infl uence on neural development in autism spectrum disorders
Die Ätiologie der Autismus-Spektrum-Störungen (ASS) ist in genetischen Risikofaktoren sowie der Interaktion von genetischen und biologisch wirksamen Umweltrisikofaktoren begründet. ASS werden aufgrund von Verhaltensmerkmalen, nämlich bleibend eingeschränkter sozialer Kommunikation, sowie durch stereotypes Verhalten, sensorische und Sonderinteressen diagnostiziert. Hinsichtlich des genetischen Hintergrundes besteht eine hohe genetische Heterogenität, d. h., die genetischen Ursachen sind vielfältig und individuell oft sehr unterschiedlich ausgeprägt. Allerdings konvergieren diese Ursachen in bestimmten biologischen Mechanismen und überlappenden biologischen Endstrecken, deren Veränderung sehr wahrscheinlich den autismusspezifischen Verhaltensmerkmalen zugrunde liegt. Die vorliegende, selektive Literaturübersicht summiert die genetischen Befunde und fokusiert sich insbesondere auf Mechanismen und Endstrecken, die aufgrund der neueren Forschung immer besser charakterisiert werden. Der Artikel schließt mit Hinweisen zur klinischen Relevanz der aktuellen Befunde sowie offenen Fragen der translationalen Forschung.Autism spectrum disorders are etiologically based on genetic and specific gene x biologically relevant environmental risk factors. They are diagnosed based on behavioral characteristics, such as impaired social communication and stereotyped, repetitive behavior and sensory as well as special interests. The genetic background is heterogeneous, i. e., it comprises diverse genetic risk factors across the disorder and high interindividual differences of specific genetic risk factors. Nevertheless, risk factors converge regarding underlying biological mechanisms and shared pathways, which likely cause the autism-specific behavioral characteristics. The current selective literature review summarizes differential genetic risk factors and focuses particularly on mechanisms and pathways currently being discussed by international research. In conclusion, clinically relevant aspects and open translational research questions are presented
Knockdown of the ADHD candidate gene Diras2 in murine hippocampal primary cells
Objective: The DIRAS2 gene is associated with ADHD, but its function is largely unknown. Thus, we aimed to explore the genes and molecular pathways affected by DIRAS2. Method: Using short hairpin RNAs, we downregulated Diras2 in murine hippocampal primary cells. Gene expression was analyzed by microarray and affected pathways were identified. We used quantitative real-time polymerase chain reaction (qPCR) to confirm expression changes and analyzed enrichment of differentially expressed genes in an ADHD GWAS (genome-wide association studies) sample. Results: Diras2 knockdown altered expression of 1,612 genes, which were enriched for biological processes involved in neurodevelopment. Expression changes were confirmed for 33 out of 88 selected genes. These 33 genes showed significant enrichment in ADHD patients in a gene-set-based analysis. Conclusion: Our findings show that Diras2 affects numerous genes and thus molecular pathways that are relevant for neurodevelopmental processes. These findings may further support the hypothesis that DIRAS2 is linked to etiological processes underlying ADHD. (J. of Att. Dis. 2021; 25(4) 572-583)
Generation of four human induced pluripotent stem cells derived from ADHD patients carrying different genotypes for the risk SNP rs1397547 in the ADHD-associated gene ADGRL3
Single nucleotide polymorphisms (SNPs) in the ADGRL3 gene have been significantly associated with the development of ADHD, the aetiology of which remains poorly understood. The rs1397547 SNP has additionally been associated with significantly altered ADGRL3 transcription. We therefore generated iPSCs from two wild type ADHD patients, and two ADHD patients heterozygous for the risk SNP. With this resource we aim to facilitate further investigation into the complex and heterogenous pathology of ADHD. Furthermore, we demonstrate the feasibility of using magnetic activated cell sorting to allow the unbiased selection of fully reprogrammed iPSCs
- …