195 research outputs found

    TPMD: a database and resources of microsatellite marker genotyped in Taiwanese populations

    Get PDF
    Taiwan Polymorphic Marker Database (TPMD) (http://tpmd.nhri.org.tw/) is a marker database designed to provide experimental details and useful marker information allelotyped in Taiwanese populations accompanied by resources and technical supports. The current version deposited more than 372 000 allelotyping data from 1425 frequently used and fluorescent-labeled microsatellite markers with variation types of dinucleotide, trinucleotide and tetranucleotide. TPMD contains text and map displays with searchable and retrievable options for marker names, chromosomal location in various human genome maps and marker heterozygosity in populations of Taiwanese, Japanese and Caucasian. The integration of marker information in map display is useful for the selection of high heterozygosity and commonly used microsatellite markers to refine mapping of diseases locus followed by identification of disease gene by positional candidate cloning. In addition, our results indicated that the number of markers with heterozygosity over 0.7 in Asian populations is lower than that in Caucasian. To increase accuracy and facilitate genetic studies using microsatellite markers, we also list markers with genotyping difficulty due to ambiguity of allele calling and recommend an optimal set of microsatellite markers for genotyping in Taiwanese, and possible extension of genotyping in other Mongoloid populations

    REG3A overexpression functions as a negative predictive and prognostic biomarker in rectal cancer patients receiving CCRT

    Get PDF
    Background. Concurrent chemoradiotherapy (CCRT) is suggested before resection surgery in the control of rectal cancer. Unfortunately, treatment outcomes are widely variable and highly patientspecific. Notably, rectal cancer patients with distant metastasis generally have a much lower survival rate. Accordingly, a better understanding of the genetic background of patient cohorts can aid in predicting CCRT efficacy and clinical outcomes for rectal cancer before distant metastasis. Methods. A published transcriptome dataset (GSE35452) (n=46) was utilized to distinguish prospective genes concerning the response to CCRT. We recruited 172 rectal cancer patients, and the samples were collected during surgical resection after CCRT. Immunohistochemical (IHC) staining was performed to evaluate the expression level of regenerating family member 3 alpha (REG3A). Pearson's chi-squared test appraised the relevance of REG3A protein expression to clinicopathological parameters. The Kaplan-Meier method was utilized to generate survival curves, and the log-rank test was performed to compare the survival distributions between two given groups. Results. Employing a transcriptome dataset (GSE35452) and focusing on the inflammatory response (GO: 0006954), we recognized that REG3A is the most significantly upregulated gene among CCRT nonresponders (log2 ratio=1.2472, p=0.0079). Following IHC validation, high immunoexpression of REG3A was considerably linked to advanced post-CCRT tumor status (p<0.001), post-CCRT lymph node metastasis (p=0.042), vascular invasion (p=0.028), and low-grade tumor regression (p=0.009). In the multivariate analysis, high immunoexpression of REG3A was independently correlated with poor disease-specific survival (DSS) (p=0.004) and metastasis-free survival (MeFS) (p=0.045). The results of the bioinformatic analysis also supported the idea that REG3A overexpression is implicated in rectal carcinogenesis. Conclusion. In the current study, we demonstrated that REG3A overexpression is correlated with poor CCRT effectiveness and inferior patient survival in rectal cancer. The predictive and prognostic utility of REG3A expression may direct patient stratification and decisionmaking more accurately for those patients

    Mechanistic Study of the Phytocompound, 2- β

    Get PDF
    Bidens pilosa, a medicinal herb worldwide, is rich in bioactive polyynes. In this study, by using high resolution 2-dimensional gel electrophoresis coupled with mass spectrometry analysis, as many as 2000 protein spots could be detected and those whose expression was specifically up- or downregulated in Jurkat T cells responsive to the treatment with 2-β-D-glucopyranosyloxy-1-hydroxytrideca-5,7,9,11-tetrayne (GHTT) can be identified. GHTT treatment can upregulate thirteen proteins involved in signal transduction, detoxification, metabolism, energy pathways, and channel transport in Jurkat cells. Nine proteins, that is, thioredoxin-like proteins, BH3 interacting domain death agonist (BID protein involving apoptosis), methylcrotonoyl-CoA carboxylase beta chain, and NADH-ubiquinone oxidoreductase, were downregulated in GHTT-treated Jurkat cells. Further, bioinformatics tool, Ingenuity software, was used to predict signaling pathways based on the data obtained from the differential proteomics approach. Two matched pathways, relevant to mitochondrial dysfunction and apoptosis, in Jurkat cells were inferred from the proteomics data. Biochemical analysis further verified both pathways involving GHTT in Jurkat cells. These findings do not merely prove the feasibility of combining proteomics and bioinformatics methods to identify cellular proteins as key players in response to the phytocompound in Jurkat cells but also establish the pathways of the proteins as the potential therapeutic targets of leukemia

    Conformational snapshots of Tec kinases during signaling

    Get PDF
    The control of cellular signaling cascades is of utmost importance in regulating the immune response. Exquisitely precise protein-protein interactions and chemical modification of substrates by enzymatic catalysis are the fundamental components of the signals that alert immune cells to the presence of a foreign antigen. In particular, the phosphorylation events induced by protein kinase activity must be spatially and temporally regulated by specific interactions to maintain a normal and effective immune response. High resolution structures of many protein kinases along with supporting biochemical data are providing significant insight into the intricate regulatory mechanisms responsible for controlling cellular signaling. The Tec family kinases are immunologically important kinases for which regulatory details are beginning to emerge. This review focuses on bringing together structural insights gained over the years to develop an understanding of how domain interactions both within the Tec kinases and between the Tec kinases and other signaling molecules control immune cell function

    Dramatic Co-Activation of WWOX/WOX1 with CREB and NF-κB in Delayed Loss of Small Dorsal Root Ganglion Neurons upon Sciatic Nerve Transection in Rats

    Get PDF
    BACKGROUND:Tumor suppressor WOX1 (also named WWOX or FOR) is known to participate in neuronal apoptosis in vivo. Here, we investigated the functional role of WOX1 and transcription factors in the delayed loss of axotomized neurons in dorsal root ganglia (DRG) in rats. METHODOLOGY/PRINCIPAL FINDINGS:Sciatic nerve transection in rats rapidly induced JNK1 activation and upregulation of mRNA and protein expression of WOX1 in the injured DRG neurons in 30 min. Accumulation of p-WOX1, p-JNK1, p-CREB, p-c-Jun, NF-kappaB and ATF3 in the nuclei of injured neurons took place within hours or the first week of injury. At the second month, dramatic nuclear accumulation of WOX1 with CREB (>65% neurons) and NF-kappaB (40-65%) occurred essentially in small DRG neurons, followed by apoptosis at later months. WOX1 physically interacted with CREB most strongly in the nuclei as determined by FRET analysis. Immunoelectron microscopy revealed the complex formation of p-WOX1 with p-CREB and p-c-Jun in vivo. WOX1 blocked the prosurvival CREB-, CRE-, and AP-1-mediated promoter activation in vitro. In contrast, WOX1 enhanced promoter activation governed by c-Jun, Elk-1 and NF-kappaB. WOX1 directly activated NF-kappaB-regulated promoter via its WW domains. Smad4 and p53 were not involved in the delayed loss of small DRG neurons. CONCLUSIONS/SIGNIFICANCE:Rapid activation of JNK1 and WOX1 during the acute phase of injury is critical in determining neuronal survival or death, as both proteins functionally antagonize. In the chronic phase, concurrent activation of WOX1, CREB, and NF-kappaB occurs in small neurons just prior to apoptosis. Likely in vivo interactions are: 1) WOX1 inhibits the neuroprotective CREB, which leads to eventual neuronal death, and 2) WOX1 enhances NF-kappaB promoter activation (which turns to be proapoptotic). Evidently, WOX1 is the potential target for drug intervention in mitigating symptoms associated with neuronal injury

    Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package

    Get PDF
    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube
    corecore