747 research outputs found
Associations between IL12B polymorphisms and tuberculosis in the Hong Kong Chinese population
Background. Interleukin (IL)-12 plays a vital role in regulating cell-mediated immunity against tuberculosis (TB). Methods. To test whether IL12B genetic polymorphisms might contribute to human TB susceptibility, we examined the genotype frequencies of 5 IL12B polymorphisms (at promoter, intron 2, intron 4, exon 5, and 3′ untranslated region [UTR]) in 516 patients with TB and 514 healthy control subjects from the Hong Kong Chinese population. Results. Individuals homozygous for the IL12B intron 2-repeat marker (ATT) 8 had a 2.1-fold increased risk of developing TB (P < .001) (odds ratio, 2.14 [95% confidence interval, 1.45-3.19]). Estimation of the frequencies of multiple-locus haplotypes composed of IL12B promoter, intron 2, intron 4, and 3′ UTR alleles revealed potential risk haplotypes (designated "A" and "K") and protective haplotypes (designated "B") for TB. Furthermore, combining the genotype data of the 4 informative IL12B loci revealed a strong association between a specific genotype pattern, termed "diplotype I" (heterozygous A and K haplotypes), and TB. In contrast, diplotype II (homozygous BB haplotypes) appeared protective against TB. Conclusions. These findings support the association between IL12B intron 2 polymorphism and TB and between specific IL12B haplotypes and TB.published_or_final_versio
Flavor SU(3) symmetry and QCD factorization in and decays
Using flavor SU(3) symmetry, we perform a model-independent analysis of
charmless decays. All the relevant
topological diagrams, including the presumably subleading diagrams, such as the
QCD- and EW-penguin exchange diagrams and flavor-singlet weak annihilation
ones, are introduced. Indeed, the QCD-penguin exchange diagram turns out to be
important in understanding the data for penguin-dominated decay modes. In this
work we make efforts to bridge the (model-independent but less quantitative)
topological diagram or flavor SU(3) approach and the (quantitative but somewhat
model-dependent) QCD factorization (QCDF) approach in these decays, by
explicitly showing how to translate each flavor SU(3) amplitude into the
corresponding terms in the QCDF framework. After estimating each flavor SU(3)
amplitude numerically using QCDF, we discuss various physical consequences,
including SU(3) breaking effects and some useful SU(3) relations among decay
amplitudes of and .Comment: 47 pages, 3 figures, 28 table
Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.
The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation
Branch Mode Selection during Early Lung Development
Many organs of higher organisms, such as the vascular system, lung, kidney,
pancreas, liver and glands, are heavily branched structures. The branching
process during lung development has been studied in great detail and is
remarkably stereotyped. The branched tree is generated by the sequential,
non-random use of three geometrically simple modes of branching (domain
branching, planar and orthogonal bifurcation). While many regulatory components
and local interactions have been defined an integrated understanding of the
regulatory network that controls the branching process is lacking. We have
developed a deterministic, spatio-temporal differential-equation based model of
the core signaling network that governs lung branching morphogenesis. The model
focuses on the two key signaling factors that have been identified in
experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well
as the SHH receptor patched (Ptc). We show that the reported biochemical
interactions give rise to a Schnakenberg-type Turing patterning mechanisms that
allows us to reproduce experimental observations in wildtype and mutant mice.
The kinetic parameters as well as the domain shape are based on experimental
data where available. The developed model is robust to small absolute and large
relative changes in the parameter values. At the same time there is a strong
regulatory potential in that the switching between branching modes can be
achieved by targeted changes in the parameter values. We note that the sequence
of different branching events may also be the result of different growth
speeds: fast growth triggers lateral branching while slow growth favours
bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is
sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio
Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans
Peer reviewedPublisher PD
TALEN-mediated editing of the mouse Y chromosome
The functional study of Y chromosome genes has been hindered by a lack of mouse models with specific Y chromosome mutations. We used transcription activator-like effector nuclease (TALEN)-mediated gene editing in mouse embryonic stem cells (mESCs) to produce mice with targeted gene disruptions and insertions in two Y-linked genes—Sry and Uty. TALEN-mediated gene editing is a useful tool for dissecting the biology of the Y chromosome.National Institutes of Health (U.S.) (US NIH grant R01-HG000257)National Institutes of Health (U.S.) (US NIH grant R01-CA084198)National Institutes of Health (U.S.) (US NIH grant R37-HD045022)Croucher Foundation (Scholarship)Howard Hughes Medical Institute (Investigator
Expert consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults
Introduction:
The aim of this study was to develop consensus recommendations on safety parameters for mobilizing adult, mechanically ventilated, intensive care unit (ICU) patients.
Methods:
A systematic literature review was followed by a meeting of 23 multidisciplinary ICU experts to seek consensus regarding the safe mobilization of mechanically ventilated patients.
Results:
Safety considerations were summarized in four categories: respiratory, cardiovascular, neurological and other. Consensus was achieved on all criteria for safe mobilization, with the exception being levels of vasoactive agents. Intubation via an endotracheal tube was not a contraindication to early mobilization and a fraction of inspired oxygen less than 0.6 with a percutaneous oxygen saturation more than 90% and a respiratory rate less than 30 breaths/minute were considered safe criteria for in- and out-of-bed mobilization if there were no other contraindications. At an international meeting, 94 multidisciplinary ICU clinicians concurred with the proposed recommendations.
Conclusion:
Consensus recommendations regarding safety criteria for mobilization of adult, mechanically ventilated patients in the ICU have the potential to guide ICU rehabilitation whilst minimizing the risk of adverse events
The diffusion of a new service: Combining service consideration and brand choice
We propose an individual-level model of a two-stage service diffusion process. In the first stage, customers decide whether to "consider" joining the service. This (Consideration) stage is modeled by a hazard model. Customers who decide to consider the service move on to the Choice stage, wherein they choose among the service alternatives and an outside No Choice option. This stage is modeled by a conditional Multinomial Logit model. The service provider does not observe the transition in the first stage of potential customers who have yet to choose a brand. Such potential customers may have started to consider joining the service, yet chose the outside alternative in each period thereafter. One of the main contributions of the model is its ability to distinguish between these two non-adopter types. We estimated the model using data on the adoption process of newly introduced service plans offered by a commercial bank. We employed the hierarchical Bayes Monte Carlo Markov Chain procedure to estimate individual as well as population parameters. The empirical results indicate that the model outperforms competing models in breadth of analysis, model fit, and prediction accuracy
The malarial exported PFA0660w is an Hsp40 co-chaperone of PfHsp70-x
Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp) family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1) or a human Hsp70 (HSPA1A), indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentrationdependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria
A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
This is the final version of the article. Available from the publisher via the DOI in this record.Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways
- …
