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Abstract
Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria

infection, survives and develops in mature erythrocytes through the export of proteins

needed for remodelling of the host cell. Molecular chaperones of the heat shock protein

(Hsp) family are prominent members of the exportome, including a number of Hsp40s and a

Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a

complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone prop-

erties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be inves-

tigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was

able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plas-

modial Hsp70 (PfHsp70-1) or a human Hsp70 (HSPA1A), indicating a potential specific

functional partnership with PfHsp70-x. Protein binding studies in the presence and absence

of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented

a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentration-

dependent suppression of rhodanese aggregation, demonstrating its chaperone properties.

Overall, we have provided the first biochemical evidence for the possible role of PFA0660w

as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones

boost the chaperone power of the infected erythrocyte, enabling successful protein traffick-

ing and folding, and thereby making a fundamental contribution to the pathology of malaria.

Introduction
Plasmodium falciparum is the protozoan parasite responsible for the most virulent form of
human malaria [1]. Although preventable and often curable, malaria remains a life-threatening
disease with high mortality [2–4]. Despite the use of preventative approaches such as insecti-
cide treated nets and indoor residual spraying [5,6], chemotherapeutic intervention is still nec-
essary to the effort to eradicate malaria. However, the ability of P. falciparum to develop drug
resistance [7,8] has made the search for new pharmacotherapy an imperative.
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P. falciparum exports parasite-encoded proteins involved in structural and functional
remodeling of the host cell. This process is essential for the development of the parasite and is
associated with the pathology of the infection [9,10]. Among the exported proteins are heat
shock proteins, functioning as molecular chaperones that are proposed to be highly adapted to
the malaria parasite lifecycle [11]. The heat shock protein 70 (Hsp70) chaperone and its co-
chaperone heat shock protein 40 (Hsp40) are involved in facilitating protein folding, stabiliza-
tion, degradation, and translocation across membranes [12,13]. Hsp70s bind to short hydro-
phobic regions of unfolded substrate proteins in an ATP-controlled manner that is regulated
by Hsp40 co-chaperones [14]. Hsp40s are characterized by the presence of the J domain
needed for the stimulation of the ATPase activity of Hsp70s [15]. On the basis of their
domains, the Hsp40s have been classified into types I-IV [16,17], with types I and II capable of
binding to unfolded substrate proteins for targeting to partner Hsp70s [18,19]. There are six
P. falciparumHsp70s (PfHsp70s), five of which are parasite-resident, with PfHsp70-1 being
the most well characterized [20–28]. PfHsp70-x is the only Hsp70 found in the parasitophorous
vacuole (PV) and the infected erythrocyte cytosol [29,30]. The host cell cytosol contains residual
human Hsp70 [31], and so it is tempting to speculate that PfHsp70-x may boost the chaperone
power of this compartment to aid proper folding of the large exportome. PfHsp70-x has been
shown to co-localize with two exported type II Hsp40s, PFE0055c and PFA0660w, in structures
called J-dots in the infected erythrocyte cytosol. Furthermore, the J-dots associate with P. falcipa-
rum erythrocytes membrane protein 1 (PfEMP1), the major malaria virulence factor [29,32]. It
has been proposed that PfHsp70-x/PFE0055c/PFA0660w play an important role in the traffick-
ing and folding of exported proteins, including malaria pathogenesis factors [33].

Small-molecule inhibitor studies [34] and homology modelling [35] have been conducted on
PfHsp70-x. However, the biochemical details of its interaction with exported plasmodial Hsp40s
(PfHsp40s) remain to be elucidated. Attempts to obtain a viable PFA0660w-knock-out parasite
line were unsuccessful, suggesting that this PfHsp40 may be essential to the parasite [36].
Although PFA0660w and PfHsp70-x co-localize in the J-dots [29], there is still no evidence for a
direct or functional interaction. The high number of potentially exported Hsp40s together with
the exported PfHsp70-x underlines the importance of the Hsp70/Hsp40 interface for the sur-
vival and development of the parasite within the erythrocyte [37,38]. Therefore, the experimen-
tal validation of a productive associate between PfHsp70-x and PFA0660w may further our
understanding of their roles and pave the way for exploring this partnership in drug discovery.

In this work, recombinant PFA0660w was biochemically characterized to understand its func-
tions alone and in combination with three Hsp70s: PfHsp70-1, PfHsp70-x and human Hsp70
(HSPA1A; [39]). Overall, we have presented the first biochemical evidence for a direct and poten-
tially specific interaction between the exported molecular chaperones PFA0660w and PfHsp70-x.

Materials and Methods

pQE30-PFA0660w expression vector
The optimized coding sequence for expression of PFA0660w in Escherichia coli was synthe-
sized and supplied by GenScript(R) (USA). The PFA0660w coding region was inserted into the
pQE30 expression vector (Qiagen, Germany) to produce a plasmid encoding the (His)6-
PFA0660w (PFA0660w) protein.

Heterologous expression and purification of PFA0660w
PFA0660w was over-expressed and purified using the E. coliM15[pREP4] strain (Qiagen, Ger-
many). Protein expression was induced by addition of 0.4 mM IPTG (isopropyl-β-D-thiogalac-
topyranoside). Bacteria cells expressing PFA0660w were harvested by centrifugation and the
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cell pellet resuspended in lysis buffer (LB: 10 mM Tris-HCl, pH 8.5, 300 mMNaCl, 50 mM
imidazole, 1 mM PMSF, 1 mg/ml lysozyme), allowed to stand for 20 min at room temperature
and then frozen at -80°C overnight. Following thawing and sonication at 4°C, the insoluble pel-
let was washed three times in wash buffer (WB: 50 mM Tris-HCl pH 8.5, 200 mMNaCl, 10
mM EDTA, 1% Triton X-100, 1 mM PMSF) and twice in double distilled water as previously
described [40,41]. The pellet was recovered after each wash by centrifugation (10000 × g at 4°C
for 10 min). The pellet was then resuspended in solubilising buffer (SB: 100 mM Tris-HCl pH
8.5, 300 mMNaCl, 8 M urea, 50 mM imidazole, 5 mM DTT, 0.1 mM EDTA, 1 mM PMSF)
and clarified by centrifugation at 16000 × g for 30 min at 4°C. To ensure proper refolding, the
solubilised protein was diluted to a final concentration of 250 μg/ml with refolding buffer (RB:
100 mM Tris-HCl pH 8.5, 300 mMNaCl, 50 mM imidazole, 10% glycerol, 5% sucrose, 1 mM
DTT, 0.1 mM EDTA, 0.1% PEG 2000, 1 mM PMSF) supplemented with 2 M urea and incu-
bated with gentle stirring at 4°C for 2 h. The supernatant was filtered through 0.45 μm filters
and loaded onto a 5 ml HisTrap HP column (GE Healthcare, UK). The column was washed
with five column volumes of RB, followed by five column volumes of RB without PEG 2000.
Protein was eluted with three column volumes of elution buffer (EB: 100 mM Tris-HCl pH 8.5,
300 mMNaCl, 0.5 M imidazole, 10% glycerol, 5% sucrose, 1 mM DTT, 0.1 mM EDTA, 1 mM
PMSF). Mouse monoclonal anti-His antibody (1:5000; GE Healthcare, UK), mouse monoclo-
nal anti-DnaK antibody (1:5000; Sigma–Aldrich, Germany) and anti-mouse HRP-conjugated
secondary antibody (1:10000; GE Healthcare, UK) were used to confirm the presence of the
target protein and rule out the presence of contaminating DnaK (E. coliHsp70). The purified
protein was stored at -80°C or dialysed into dialysis buffer (DB: 50 mM Tris-HCl pH 8.5, 300
mMNaCl, 1 mM DTT, 1 mM PMSF, except otherwise stated) for further studies. Secondary
structure analysis of the refolded protein was performed using Fourier transformed infrared
(FTIR) spectroscopy as previously described [42].

Purification of Hsj1a, PfHsp70-1, PfHsp70-x and HSPA1A
Recombinant (His)6-Hsj1a (Hsj1a is formally called DNAJB2a), (His)6-PfHsp70-1 and (His)6-
PfHsp70-x (Hsj1a, PfHsp70-1, PfHsp70-x) were purified under native conditions as previously
described [24,34,43], while recombinant HSPA1A-(His)6 (HSPA1A) was purified according to
Chiang and colleagues [23]. Samples were dialysed into DB or into the appropriate assay buffer
for functional studies.

Size exclusion chromatography of PFA0660w
Size exclusion chromatography of purified PFA0660w was performed using an ÄKTAbasic
FPLC system with a Superdex 200 HR 16/60 column (Amersham Pharmacia Biotech, UK),
equilibrated with a suitable buffer (50 mM Tris–HCl, pH 8.5 and 0.15 M NaCl). The following
molecular mass standards were used: blue dextran (2000 kDa—void volume), catalase (240
kDa), BSA (66 kDa), ovalbumin (45 kDa), carbonic anhydrase (29 kDa), RNase A (13.7 kDa)
and lysozyme (14.3 kDa). The flow rate was maintained at 1 ml/min.

ATPase assays
The ability of PFA0660w to stimulate Hsp70 ATPase activity was determined by colorimetric
assay as previously reported [26,34] with modifications in the ATPase buffer composition as
follows: 50 mM Tris-HCl pH 8.5, 2 mMMgCl2, 100 mM KCl, 0.5 mM DTT. Submolar
(0.2 μM), equimolar (0.4 μM) and molar excess (0.8 μM) concentrations of the Hsp40 to
0.4 μM of the Hsp70s (PfHsp70-1, PfHsp70-x, HSPA1A) were used. All assays were corrected
for spontaneous ATP hydrolysis and inactivated Hsp70s (boiled for 15 min at 100°C) were
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used as controls. Assays were conducted in triplicate, and at least three separate experiments
were performed using batches of independently purified proteins. Specific basal ATPase activ-
ity was expressed as nmol Pi released/min/mg Hsp70 protein and percent fold increase. Data
are presented as mean ± standard error of mean (mean ± SEM).

Aggregation suppression assay
The capacity of PFA0660w to suppress the aggregation of rhodanese, a model protein for
aggregation studies, either alone or in the presence of PfHsp70-1, PfHsp70-x or HSPA1A was
adapted from previously published methods [44–46]. Briefly, aliquots of 300 μM bovine rhoda-
nese (Sigma-Aldrich, Germany) in 50 mM Tris-HCl pH 8.5 were denatured for 3 h at 25°C in
denaturing buffer (6 M guanidine hydrochloride, 50 mM Tris-HCl pH 8.5, 300 mMNaCl, 1
mMDTT) to a concentration of 25 μM. Denatured rhodanese was diluted into reaction buffer
(50 mM Tris-HCl pH 8.5, 300 mMNaCl, 1 mMDTT) to a final concentration of 1.5 μM before
the rate of its aggregation was monitored at 320 nm for 20 min at room temperature with a
Helios Alpha UV-Vis spectrophotometer (Thermo Scientific, USA). Varying concentrations of
PFA0660w or each Hsp70 in combination with the Hsp40 were added to the assay buffer and
equilibrated at room temperature prior to the addition of denatured rhodanese. As a control,
the aggregation of the chaperones was monitored in the reaction buffer without rhodanese.
Assays were conducted in triplicate for each experiment, and at least three independent experi-
ments were performed using batches of proteins from separate purifications. The aggregation
suppression was expressed as percentage of rhodanese aggregation following normalization
against assays with rhodanese alone and expressed as mean ± SEM.

Protein-protein binding studies
Surface plasmon resonance (SPR) spectroscopy was performed using a BioRad ProteOn XPR36
optical biosensor with low immobilization GLC biosensor chip. The ProteOn phosphate buff-
ered saline Tween-20 solution (PBST: 10 mM phosphate pH 7.4, 137 mMNaCl, 3 mMKCl,
0.005% v/v Tween-20) and ProteOn Kits (amine coupling, deactivation and post maintenance
kits) were obtained from Bio-Rad Laboratories, USA. GLC chip conditioning and amine coupled
ligand immobilization onto chip surfaces were performed as previously described [47]. The pH
of the buffer for optimum ligand immobilisation was 4.5 for Hsp70s and the reference channel
was injected with 20 mM sodium acetate (pH 4.5). A concentration of 10 μg/ml of each Hsp70
(~135 nM PfHsp70-1, ~132 nM PfHsp70-x and ~143 nMHSPA1A) was used for the immobili-
zation. BSA and Hsj1a both at 1 μM concentration with and without ATP (1 mM) were included
as controls. PBST buffer blanks with and without ATP were included either as part of the analyte
runs or as separate analyte runs for double referencing. For interaction studies, a range of
PFA0660w concentrations (200, 400, 600, 800 and 1000 nM) and buffer blank with 1 mMATP
were injected on the immobilized chip surface at a flow rate of 60 μl/min and a contact time of
90 s with a dissociation of 300 s. Double referencing was performed by subtraction of the blank
ligand channel and the ATP buffer blank injections from PFA0660w interaction results. Each
set of experiments was carried out in triplicate using at least three independent batches of puri-
fied PFA0660w. Data were analysed using ProteOnManager (Bio-Rad, USA) and BIAevaluation
4.1.1 (GE Healthcare, UK) softwares. Global non-linear regression separate data fits were per-
formed on the association and dissociation curves based on the built-in Langmuir association
and the exponential decay models to determine the association (ka) and dissociation (kd) rate
constants, and the equilibrium dissociation constants (KD). Qualitative interpretations of the
binding assays conducted in the presence and absence of ATP were derived from inspection of
the gradients for the association and dissociation curves.

Functional Interaction of PFA0660w with PfHsp70-x
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Results and Discussion

PFA0660w was successfully purified and exists as a monomer in
solution
PFA0660w was over-expressed in E. coliM15[pREP4] cells, reaching maximum expression lev-
els within 3 h post induction. The protein was largely insoluble and solubilization in buffer
containing urea/DTT/EDTA, and refolding in DTT/EDTA/glycerol/PEG/sucrose containing
buffers resulted in improved yield. Western analysis showed that PFA0660w was successfully
purified and the elutions were void of DnaK (Fig 1A). The secondary structure analysis by
FTIR (Fig 1B) revealed a high β-sheet content (38.17%) compared to α-helices (13.03%), which

Fig 1. PFA0660w exists as a monomer in solution. (A): SDS-PAGE (upper panel) and western analysis
(lower panel) of PFA0660w purification from E. coli. NL, whole cell lysis supernatant and PL, supernatant
obtained from urea-solubilized pellets. E1 to E6, elution fractions following purification from PL. The arrow
indicates PFA0660w on the SDS-PAGE gel. M is the protein molecular mass marker in kDa. Lower panels
show western analysis with anti-His (1:5000) and anti-DnaK primary antibodies (1:5000) for confirmation of
the presence of PFA0660w and lack of DnaK respectively. (B) The spectra of the amide I region (1600–1700
cm-1) of normalized native PFA0660w samples (upper panel) and secondary structure analysis (lower
panel). The infrared spectra were deconvoluted and the peaks fitted with Gaussian curves. The Gaussian
curves are shown as symmetrical peaks underneath the deconvoluted infrared spectra. The assigned
secondary structures are shown at the top of each peak. Relative contents of the secondary structure
calculated as the proportion of the peaks areas to the total area under the curve are 38.17% β-sheets,
38.82% turns, 13.03% α-helix, 12.57% unordered and 1.41% un-assigned. (C) Analysis of the FPLC
chromatographs of PFA0660w at 0.11 mg/ml for the upper panel and 0.54 mg/ml for the lower panelwith an
injection volume of 2 ml. The elution volumes for the standards are indicated with black filled arrowheads and
were determined by peak integration as follows: 43.79 ml for blue dextran (BD), 62.19 ml for catalase (C),
71.35 ml for BSA (B), 80.30 ml for ovalbumin (O), 87.99 ml for carbonic anhydrase (CA) and 96.25 for RNase
A (R). Molecular masses in kDa are given in parenthesis and blue dextran was used to determine the void
volume. Western analysis with anti-His antibody (1:5000) of elution volumes 78, 79 and 80 ml are inserted.

doi:10.1371/journal.pone.0148517.g001
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correlated well with the predicted secondary structure content from homology modelling of
the C-terminal domain (data not shown) of high β-sheet content (44.3%) compared to α-heli-
ces (12.0%). Most Hsp40 proteins have been found to exist as homodimers, and dimer forma-
tion has also been shown to be important for functionality [48–52]. Therefore, the oligomeric
state of PFA0660w was investigated. Size exclusion chromatography revealed a single major
peak when using two different concentrations of purified PFA0660w (Fig 1C). Western analy-
sis of the fractions confirmed that the major peak was PFA0660w. This peak eluted similarly to
ovalbumin (45 kDa) (Fig 1C), indicating a predicted molecular mass for PFA0660w that was
slightly higher than that predicted for a monomer (~41 kDa), but lower than that predicted for
a dimer (~82 kDa). This suggested that PFA0660w existed in solution as a monomer with an
extended conformation. However, since dimerization can occur upon ligand binding, it cannot
be excluded that PFA0660w may form dimers or heterodimers, for instance with PFE0055c
within the J-dots in vivo when interacting with its partner proteins and substrates.

PFA0660w selectively stimulated the ATPase activity of PfHsp70-x
Given that PFA0660w has been shown to be physically associated with PfHsp70-x in J-dots, we
tested its ability to modulate the ATPase activities of PfHsp70-x, HSPA1A (another potential
partner) and PfHsp70-1 (an unlikely partner). The basal specific ATPase activities for
PfHsp70-x, PfHsp70-1 and HSPA1A were comparable, with values of 12.79 ± 0.13, 9.15 ± 0.26

Fig 2. PFA0660w stimulates the ATPase activity of PfHsp70-x. The bar graphs show the basal and
PFA0660w-stimulated ATPase activities of PfHsp70-x (A), PfHsp70-1 (B) and HSPA1A (C) expressed as
mean ± SEM. Each set of bar graphs represents the fold increase in the ATPase activity of the Hsp70 alone
(0.4 μM) or in combination with sub-molar (0.2 μM), equimolar (0.4 μM) and molar excess (0.8 μM)
concentrations of PFA0660w or equimolar (0.4 μM) concentration of Hsj1a. The boiled samples of Hsp70s
and native sample of Hsj1a serve as negative and positive controls respectively. All samples were corrected
for spontaneous ATP hydrolysis before normalization to obtain fold increase. Error bars are indicated on each
bar and * indicates statistical significance at P<0.05 relative to basal ATPase value for respective chaperone
using Student T-test. constituents that were either included or omitted from the reaction medium are indicated
by (+) or (-) sign, respectively. Shown here are the combined data from three independent experiments
performed in triplicate using at least three batches of independently purified proteins for each experiment.

doi:10.1371/journal.pone.0148517.g002
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Fig 3. PFA0660w suppresses rhodanese aggregation.Rhodanese aggregation suppression assays were
performed for 20 min at room temperature. (A) The curves of absorbance at 320 nm (x 102) versus time (min)
showing aggregation of rhodanese alone (1.5 μMRh, filled black squares) or in the presence of a range of
concentrations (filled triangles) of recombinant PFA0660w (PFA). PFA0660w concentrations are shown at
the end of each progress curve. The error bars are indicated for each plotted data. The absorbance values
were multiplied by 102 so that the calculated errors can be clearly seen on the graph. Twenty time points were
used to plot the progress curves. PFA0660w showed a concentration-dependent suppression of rhodanese
aggregation. (B) Bar graphs showing the comparison of the effects of 1.5 μM of PFA0660w, PfHsp70-1,
PfHsp70-x and HSPA1A on rhodanese aggregation. Both PFA0660w and PfHsp70-1 produced a complete
suppression at 1.5 μM. (C) The effect of PFA0660w (0.5 μM) on rhodanase aggregation suppression activity
of PfHsp70-x (1.0 μM), PfHsp70-1 (0.25 μM) and HSPAIA (1.0 μM) respectively. BSA (1.5 μM) was used as a
control, and the rhodanese aggregation in the presence of BSA was set as 100% (not shown). Error bars are
indicated. An * or # indicates statistical significance at P<0.05 when compared to rhodanese or to both
Hsp70s and PFA0660w respectively, using Student T-test. InC, constituents that were either included or
omitted from the reaction medium are indicated by (+) or (-) sign, respectively. Shown here are the combined
data from three independent experiments performed in triplicate using at least three batches of independently
purified proteins for each experiment.

doi:10.1371/journal.pone.0148517.g003
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and 8.40 ± 0.16 nmol Pi/min/mg, respectively. In the presence of PFA0660w, the results
showed a concentration-dependent and a statistically significant (P<0.05) increase in the stim-
ulation of the ATPase activity of PfHsp70-x while the stimulation of PfHsp70-1 and HSPA1A
was neither concentration-dependent nor significant (Fig 2A–2C). A previously used positive
control Hsp40, Hsj1a [14,23,32], significantly stimulated the ATPase activity of each Hsp70 as
expected (Fig 2A–2C). Neither Hsj1a nor PFA0660w displayed any ATPase activity (data not
shown). The ATPase assays showed that all of the Hsp70s were functional as their basal activi-
ties could be stimulated by the control Hsj1a. In contrast to Hsj1a, PFA0660w only stimulated
the ATPase activity of PfHsp70-x, suggesting functional specificity for the exported Hsp70.

PFA0660w is able to suppress the aggregation of rhodanese
Since PFA0660w could specifically stimulate the ATPase activity of PfHsp70-x, we next tested
its ability suppress protein aggregation alone and together with PfHsp70-x, HSPA1A and
PfHsp70-1. PFA0660w produced a concentration-dependent decrease in the aggregation of
chemically denatured rhodanese when used on its own (Fig 3A). This indicated that
PFA0660w possessed independent protein aggregation suppression activity. PFA0660w and

Fig 4. Kinetics of the Interaction of PFA0660wwith PfHsp70-x, PfHsp70-1 and HSPA1A. Shown are the
representative concentration dependent SPR sensorgrams of increasing concentrations of PFA0660w (200–
1000 nM) passed over the immobilised Hsp70s in the presence of 1 mM ATP. Solid grey and dotted black
lines indicate collected sensorgram data and data fits respectively. Regions selected for data fitting were 20 s
after analyte injection and 20 s before end of injection for association phase. Region selected was based on
dy/dx derivitization of data. The exponential decay model was fit to the stable portion of the dissociation
phase. The lower panel shows the kinetic rate constants from separate association and dissociation curve
non-linear regression fits (mean ± standard deviation frommultiple replicates; n = 3), and equilibrium
dissociation constants (KD values) calculated from the kinetic rate constants. The interaction assays for each
replicate were generated with freshly prepared analytes and ATP. All data were double referenced using
buffer blanks and blank channel.

doi:10.1371/journal.pone.0148517.g004
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PfHsp70-1 completely suppressed the aggregation of rhodanese at 1.5 μM, while the same con-
centration of PfHsp70-x and HSPA1A produced a 45.10 ± 1.32% and 45.99 ± 0.68% reduction
of aggregation respectively (Fig 3B). These data suggested that PFA0660w suppresses the aggre-
gation of rhodanese more effectively than PfHsp70-x and HSPA1A. The effect of PFA0660w
(0.5 μM) on the aggregation suppression activities of PfHsp70-1 (0.25 μM), PfHsp70-x (1 μM)
and HSPAIA (1 μM) was further determined. The concentrations of the Hsp70s used in the
assay were those that produced a significant reduction in rhodanese aggregation but with
aggregation still greater than 50%. BSA (1.5 μM) was used as a control and did not produce any
effect on the aggregation of rhodanese (data not shown). While PFA0660w (0.5 μM) produced
an additive effect on the protein aggregation suppression activities of each Hsp70, no major
stimulatory effect was observed (Fig 3C). PFA0660w appears to be relatively efficient at the
suppression of protein aggregation, with activity higher than that reported for other Hsp40
proteins [46,53]. PFA0660w may function as both an independent chaperone or ‘holdase’ and
a co-chaperone passing unfolded proteins onto PfHsp70-x and stimulating its ATPase activity.

Fig 5. The effects of ATP on the interaction of PFA0660wwith PfHsp70-x, PfHsp70-1 and HSPA1A. The
effects of ATP on the interaction of BSA, Hsj1a and PFA0660w with Hsp70s were tested using SPR
spectroscopy. The analysis was performed by passing BSA, Hsj1a or PFA0660w (1 μM) over the
immobilised Hsp70s in the presence and absence of 1 mM ATP. BSA and Hsj1a served as controls. The
interaction assays were performed in triplicate and repeated at least three times with freshly prepared
analytes and ATP. All data were double referenced using buffer blanks (with or without ATP) and blank
channel. Shown here are representative sensograms for the interaction of BSA (upper panel), Hsj1a
(middle panel) and PFA0660w (lower panel) with PfHsp70-x (a), PfHsp70-1 (b) and HSPA1A (c).

doi:10.1371/journal.pone.0148517.g005
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PFA0660w binding to PfHsp70-x is consistent with a co-chaperone role
The functional assays implied that PFA0660w interacted specifically and directly with
PfHsp70-x as a co-chaperone, and so we used SPR spectroscopy to further assess direct bind-
ing. These binding assays were performed in presence of 1 mM ATP to abrogate any substrate/
chaperone interactions [54,55]. The kinetics of PFA0660w binding to immobilized PfHsp70-1,
PfHsp70-x and HSPA1A suggested there was direct binding with slightly different association
and dissociation rate constants (Fig 4). The KD values suggested that the affinities of
PFA0660w for PfHsp70-x (37 nM) and HSPA1A (64 nM) were similar, and greater than its
affinity for PfHsp70-1 (251 nM). However, since Hsp70s undergo conformational changes in
the presence of ATP due to their ATPase activity, conclusions from comparison of these affini-
ties should be considered preliminary. To further explore the co-chaperone/chaperone nature
of the associations, the interaction of PFA0660w with the Hsp70s was monitored by SPR spec-
troscopy in the presence (substrate interactions abrogated) and absence (substrate interactions
possible) of ATP (Fig 5). A BSA negative control showed no interaction with the Hsp70s either
in the presence or absence of ATP, whilst the positive control Hsj1a showed increased binding
to all the Hsp70s in the presence of ATP (Fig 5). This was consistent with the fact that it func-
tioned as a co-chaperone and stimulated the ATPase activity of all the Hsp70s (Fig 2). On the
other hand, PFA0660w only showed increased binding to PfHsp70-x in the presence of ATP
(Fig 5), the only chaperone whose ATPase activity it was able to stimulate (Fig 2). Interestingly,
the binding of PFA0660w to PfHsp70-1 and HSPA1A was reduced in the presence of ATP
compared to without ATP (Fig 5). Overall, these data suggested that the interaction of
PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction.

Conclusion
We have provided the first biochemical evidence for a specific functional co-chaperone interac-
tion between the exported malarial PFA0060w and PfHsp70-x. PFA0660w was able to specifi-
cally stimulate the ATPase activity of PfHsp70-x and work additively with it in suppressing
protein aggregation. It also showed considerable protein aggregation suppression activity
alone, suggesting that it could potentially act independently as a chaperone. Protein binding
studies in the presence and absence of ATP suggested that the interaction of PFA0660w with
PfHsp70-x most likely represented a co-chaperone/chaperone interaction. These findings are
consistent with, and support, the proposed role of PfHsp70-x and PFA0660w in parasite pro-
tein trafficking and folding in the infected erythrocyte cytosol. Further studies are underway to
determine the molecular basis for the specificity of this interaction, and to identify small-mole-
cule inhibitors capable of disrupting the interaction.
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