339 research outputs found

    Polymorphism and selection of rpoS in pathogenic Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Though RpoS is important for survival of pathogenic <it>Escherichia coli </it>in natural environments, polymorphism in the <it>rpoS </it>gene is common. However, the causes of this polymorphism and consequential physiological effects on gene expression in pathogenic strains are not fully understood.</p> <p>Results</p> <p>In this study, we found that growth on non-preferred carbon sources can efficiently select for loss of RpoS in seven of ten representative verocytotoxin-producing <it>E. coli </it>(VTEC) strains. Mutants (Suc<sup>++</sup>) forming large colonies on succinate were isolated at a frequency of 10<sup>-8 </sup>mutants per cell plated. Strain O157:H7 EDL933 yielded mainly mutants (about 90%) that were impaired in catalase expression, suggesting the loss of RpoS function. As expected, inactivating mutations in <it>rpoS </it>sequence were identified in these mutants. Expression of two pathogenicity-related phenotypes, cell adherence and RDAR (red dry and rough) morphotype, were also attenuated, indicating positive control by RpoS. For the other Suc<sup>++ </sup>mutants (10%) that were catalase positive, no mutation in <it>rpoS </it>was detected.</p> <p>Conclusion</p> <p>The selection for loss of RpoS on poor carbon sources is also operant in most pathogenic strains, and thus is likely responsible for the occurrence of <it>rpoS </it>polymorphisms among <it>E. coli </it>isolates.</p

    Investigating weekend effect in the management of upper and lower extremity degloving injuries

    Get PDF
    BACKGROUND: Weekend presentation has been associated with adverse outcomes in emergent conditions, including stroke, myocardial infarction, and critical limb ischemia. We examine whether a weekend effect exists in the management of and outcomes after extremity degloving injuries. METHODS: The cohort included adults presenting with open extremity degloving injuries to a tertiary level one trauma center between June 2018 and May 2022. We collected demographics, comorbidities, injury information, interventions, and complications. Propensity score weighting was used to minimize confounding differences between those presenting on weekends (Sat-Sun) versus weekdays (Mon-Fri). Weighted regressions were used to examine differences in interventions by day of presentation. Multivariable weighted regressions accounting for differences in interventions received were used to examine whether weekend presentation was associated with amputation risk, complications, or functional deficits. RESULTS: Ninety-five patients with 100 open extremity degloving injuries were included. In total, 39% of injuries were weekend-presenting. There was a higher rate of noninsulin-dependent diabetes among patients presenting on weekends ( CONCLUSION: Weekend presentation may impact interventions received and amputation risk in patients presenting with open extremity degloving injuries

    The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM

    Get PDF
    Using a comprehensive atmospheric GCM coupled to a slab mixed layer ocean, experiments are performed to study the mechanism by which displacements of the intertropical convergence zone (ITCZ) are forced from the extratropics. The northern extratropics are cooled and the southern extratropics are warmed by an imposed cross-equatorial flux beneath the mixed layer, forcing a southward shift in the ITCZ. The ITCZ displacement can be understood in terms of the degree of compensation between the imposed oceanic flux and the resulting response in the atmospheric energy transport in the tropics. The magnitude of the ITCZ displacement is very sensitive to a parameter in the convection scheme that limits the entrainment into convective plumes. The change in the convection scheme affects the extratropical-tropical interactions in the model primarily by modifying the cloud response. The results raise the possibility that the response of tropical precipitation to extratropical thermal forcing, important for a variety of problems in climate dynamics (such as the response of the tropics to the Northern Hemisphere ice sheets during glacial maxima or to variations in the Atlantic meridional overturning circulation), may be strongly dependent on cloud feedback. The model configuration described here is suggested as a useful benchmark helping to quantify extratropical-tropical interactions in atmospheric models.open988

    Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting

    Get PDF
    We present an analytical method to quantify clustering in super-resolution localization images of static surfaces in two dimensions. The method also describes how over-counting of labeled molecules contributes to apparent self-clustering and how the effective lateral resolution of an image can be determined. This treatment applies to clustering of proteins and lipids in membranes, where there is significant interest in using super-resolution localization techniques to probe membrane heterogeneity. When images are quantified using pair correlation functions, the magnitude of apparent clustering due to over-counting will vary inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. Over-counting does not yield apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (Fc{\epsilon}RI) on the plasma membranes of chemically fixed RBL-2H3 mast cells from images acquired using stochastic optical reconstruction microscopy (STORM) and scanning electron microscopy (SEM). We find that apparent clustering of labeled IgE bound to Fc{\epsilon}RI detected with both methods arises from over-counting of individual complexes. Thus our results indicate that these receptors are randomly distributed within the resolution and sensitivity limits of these experiments.Comment: 22 pages, 5 figure

    Multi-site genetic analysis of diffusion images and voxelwise heritability analysis : a pilot project of the ENIGMA–DTI working group

    Get PDF
    The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA–DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18–85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/)

    The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization

    Get PDF
    The response of tropical precipitation to extratropical thermal forcing is reexamined using an idealized moist atmospheric GCM that has no water vapor or cloud feedbacks, simplifying the analysis while retaining the aquaplanet configuration coupled to a slab ocean from the authors' previous study. As in earlier studies, tropical precipitation in response to high-latitude forcing is skewed toward the warmed hemisphere. Comparisons with a comprehensive GCM in an identical aquaplanet, mixed-layer framework reveal that the tropical responses tend to be much larger in the comprehensive GCM as a result of positive cloud and water vapor feedbacks that amplify the imposed extratropical thermal forcing. The magnitude of the tropical precipitation response in the idealized model is sensitive to convection scheme parameters. This sensitivity as well as the tropical precipitation response can be understood from a simple theory with two ingredients: the changes in poleward energy fluxes are predicted using a onedimensional energy balance model and a measure of the "total gross moist stability" [??m, which is defined as the total (mean plus eddy) atmospheric energy transport per unit mass transport] of the model tropics converts the energy flux change into a mass flux and a moisture flux change. The idealized model produces a low level of compensation of about 25% between the imposed oceanic flux and the resulting response in the atmospheric energy transport in the tropics regardless of the convection scheme parameter. Because Geophysical Fluid Dynamics Laboratory Atmospheric Model 2 (AM2) with prescribed clouds and water vapor exhibits a similarly low level of compensation, it is argued that roughly 25% of the compensation is dynamically controlled through eddy energy fluxes. The sensitivity of the tropical response to the convection scheme in the idealized model results from different values of ??m: smaller ??m leads to larger tropical precipitation changes for the same response in the energy transport.open624

    Genetics of brain fiber architecture and intellectual performance

    Get PDF
    The study is the first to analyze genetic and environmental factors that affect brain fiber architecture and its genetic linkage with cognitive function. We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4 Tesla), in 92 identical and fraternal twins. White matter integrity, quantified using fractional anisotropy (FA), was used to fit structural equation models (SEM) at each point in the brain, generating three-dimensional maps of heritability. We visualized the anatomical profile of correlations between white matter integrity and full-scale, verbal, and performance intelligence quotients (FIQ, VIQ, and PIQ). White matter integrity (FA) was under strong genetic control and was highly heritable in bilateral frontal (a2 = 0.55, p = 0.04, left; a2 = 0.74, p = 0.006, right), bilateral parietal (a2 = 0.85, p < 0.001, left; a2 = 0.84, p < 0.001, right), and left occipital (a2 = 0.76, p = 0.003) lobes, and was correlated with FIQ and PIQ in the cingulum, optic radiations, superior fronto-occipital fasciculus, internal capsule, callosal isthmus, and the corona radiata (p = 0.04 for FIQ and p = 0.01 for PIQ, corrected for multiple comparisons). In a cross-trait mapping approach, common genetic factors mediated the correlation between IQ and white matter integrity, suggesting a common physiological mechanism for both, and common genetic determination. These genetic brain maps reveal heritable aspects of white matter integrity and should expedite the discovery of single-nucleotide polymorphisms affecting fiber connectivity and cognition

    Minimally invasive postmortem intestinal tissue sampling in malnourished and acutely ill children is feasible and informative

    Get PDF
    BACKGROUND: Intestinal disorders such as environmental enteric dysfunction (EED) are prevalent in low- and middle-income countries (LMICs) and important contributors to childhood undernutrition and mortality. Autopsies are rarely performed in LMICs but minimally invasive tissue sampling is increasingly deployed as a more feasible and acceptable procedure, although protocols have been devoid of intestinal sampling to date. We sought to determine (1) the feasibility of postmortem intestinal sampling, (2) whether autolysis precludes enteric biopsies\u27 utility, and (3) histopathologic features among children who died during hospitalization with acute illness or undernutrition. METHODS: Transabdominal needle and endoscopic forceps upper and lower intestinal sampling were conducted among children aged 1 week to 59 months who died while hospitalized in Blantyre, Malawi. Autolysis ratings were determined for each hematoxylin and eosin slide, and upper and lower intestinal scoring systems were adapted to assess histopathologic features and their severity. RESULTS: Endoscopic and transabdominal sampling procedures were attempted in 28 and 14 cases, respectively, with \u3e90% success obtaining targeted tissue. Varying degrees of autolysis were present in all samples and precluded histopathologic scoring of 6% of 122 biopsies. Greater autolysis in duodenal samples was seen with longer postmortem interval (Beta = 0.06, 95% confidence interval, 0.02-0.11). Histopathologic features identified included duodenal Paneth and goblet cell depletion. Acute inflammation was absent but chronic inflammation was prevalent in both upper and lower enteric samples. Severe chronic rectal inflammation was identified in children as young as 5.5 weeks. CONCLUSIONS: Minimally invasive postmortem intestinal sampling is feasible and identifies histopathology that can inform mortality contributors

    Minimally invasive postmortem intestinal tissue sampling in malnourished and acutely ill children is feasible and informative

    Get PDF
    BACKGROUND: Intestinal disorders such as environmental enteric dysfunction (EED) are prevalent in low- and middle-income countries (LMICs) and important contributors to childhood undernutrition and mortality. Autopsies are rarely performed in LMICs but minimally invasive tissue sampling is increasingly deployed as a more feasible and acceptable procedure, although protocols have been devoid of intestinal sampling to date. We sought to determine (1) the feasibility of postmortem intestinal sampling, (2) whether autolysis precludes enteric biopsies\u27 utility, and (3) histopathologic features among children who died during hospitalization with acute illness or undernutrition. METHODS: Transabdominal needle and endoscopic forceps upper and lower intestinal sampling were conducted among children aged 1 week to 59 months who died while hospitalized in Blantyre, Malawi. Autolysis ratings were determined for each hematoxylin and eosin slide, and upper and lower intestinal scoring systems were adapted to assess histopathologic features and their severity. RESULTS: Endoscopic and transabdominal sampling procedures were attempted in 28 and 14 cases, respectively, with \u3e90% success obtaining targeted tissue. Varying degrees of autolysis were present in all samples and precluded histopathologic scoring of 6% of 122 biopsies. Greater autolysis in duodenal samples was seen with longer postmortem interval (Beta = 0.06, 95% confidence interval, 0.02-0.11). Histopathologic features identified included duodenal Paneth and goblet cell depletion. Acute inflammation was absent but chronic inflammation was prevalent in both upper and lower enteric samples. Severe chronic rectal inflammation was identified in children as young as 5.5 weeks. CONCLUSIONS: Minimally invasive postmortem intestinal sampling is feasible and identifies histopathology that can inform mortality contributors

    Common Warming Pattern Emerges Irrespective of Forcing Location

    Get PDF
    The Earth&apos;s climate is changing due to the existence of multiple radiative forcing agents. It is under question whether different forcing agents perturb the global climate in a distinct way. Previous studies have demonstrated the existence of similar climate response patterns in response to aerosol and greenhouse gas (GHG) forcings. In this study, the sensitivity of tropospheric temperature response patterns to surface heating distributions is assessed by forcing an atmospheric general circulation model coupled to an aquaplanet slab ocean with a wide range of possible forcing patterns. We show that a common climate pattern emerges in response to localized forcing at different locations. This pattern, characterized by enhanced warming in the tropical upper troposphere and the polar lower troposphere, resembles the historical trends from observations and models as well as the future projections. Atmospheric dynamics in combination with thermodynamic air-sea coupling are primarily responsible for shaping this pattern. Identifying this common pattern strengthens our confidence in the projected response to GHG and aerosols in complex climate models
    corecore