269 research outputs found

    Structure-based vaccine design by electron microscopy

    Get PDF
    Modern vaccine design relies on multiscale, interdisciplinary efforts that take advantage of innovative technologies such as in silico identification of antigens, high throughput screening of antigen immunogenicity, and gene expression profiling to predict host immune responses. In recent years, structural analysis has played an increasingly important role in vaccine development as a means to improve antigen stability, immunogenicity and large scale production. Transmission electron microscopy (TEM), and in particular cryo-TEM, is an established and powerful imaging technique applicable to many specimens, including the three-dimensional (3D) reconstruction of macromolecules and their associated complexes to high resolution. The technique is parsimonious in its material requirements and captures the specimens in their fully hydrated state, close to their native environment. The resolution of cryo-TEM reconstructions was limited to the subnanometer range until the recent development of direct electron detectors and improvements in image processing software, which has led to a so-called “resolution revolution” in the cryo-TEM field. Several protein structures have now been solved at near atomic resolution, establishing the technique as a viable alternative to X-ray analysis for high resolution structure determination. We have determined several structures with and without bound compounds at 2.9 Å – 3.6 Å resolution, which are being integrated into drug discovery and development workflows by our clients. Here we present the 2.4Å resolution structure of apoferritin determined with our Titan Krios electron microscope as an example of the cryo-TEM services available at NIS. These services are significantly enhanced with unique access by NIS to a new instrument, Spotiton, a robotic device that dispenses picoliter-volumes of sample onto a self-blotting nanowire grid as it flies past en route to vitrification. This provides several advantages over standard vitrification methods, including more automated and reproducible preparation of specimens and reducing the deleterious effects of particles interacting with the air-water interface. While high resolution 3D structure determination by cryo-TEM is at the forefront of structural biology, averages of 2D projection images at moderate resolution in negative stain or vitreous ice can also provide a wealth of information that may be difficult to obtain using other methods. This is illustrated in a number of case studies, including (1) mapping of neutralizing epitopes on the CMV pentameric glycoprotein complex; (2) mapping of neutralizing epitopes on the HIV-1 envelope glycoprotein trimer; (3) assessment of structure and conformational stability of pre- and post-fusion RSV-F protein; (4) characterization of novel adjuvants and protein delivery systems. In summary, both the moderate resolution TEM and high resolution cryo-TEM methods are well suited to extensively characterize antigen structure-function relationships, some of which may be refractory to other experimental methods

    Internal Labor Markets and Diversification Strategies in Financial Services

    Get PDF
    This paper assesses the fit between firm-level Internal Labor Markets (ILMs) and firm diversification in the U.S. financial services sector. The sector comprises a number of related sub-industries and recent deregulation has allowed firms to construct increasingly diversified portfolios of activities across these sub-industries. Recent deregulation, particularly in banking, has also loosened geographic restrictions on firm activities. Drawing on the “resource-based view” of firm strategy, we hypothesize that firms with stronger ILMs are more likely to diversify. We find support for this view in analysis of data from the Longitudinal Household-Employer Dynamics program matched to the Longitudinal Business Database. Firms with lower net turnover, lower wage dispersion, and greater opportunities for workers inside the firm tend to be those that diversify more subsequently

    Quaternary hinterland evolution of the active Banda Arc : Surface uplift and neotectonic deformation recorded by coral terraces at Kisar, Indonesia

    Get PDF
    Coral terrace surveys and U-series ages of coral yield a surface uplift rate of ~0.5. m/ka for Kisar Island, which is an emergent island in the hinterland of the active Banda arc-continent collision. Based on this rate, Kisar first emerged from the ocean as recently as ~450. ka. These uplifted terraces are gently warped in a pattern of east-west striking folds. These folds are strike parallel to more developed thrust-related folds of similar wavelength imaged by a seismic reflection profile just offshore. This deformation shows that the emergence of Kisar is influenced by forearc closure along the south-dipping Kisar Thrust. However, the pinnacle shape of Kisar and the protrusion of its metamorphic rocks through the forearc basin sediments also suggest a component of extrusion along shear zones or active doming.Coral encrusts the island coast in many locations over 100. m above sea level. Terrace morphology and coral ages are best explained by recognizing major surfaces as mostly growth terraces and minor terraces as mostly erosional into older terraces. All reliable and referable coral U-series ages determined by MC-ICP-MS correlate with marine isotope stage (MIS) 5e (118-128. ka). The only unaltered coral samples are found below 6. m elevation; however an unaltered Tridacna (giant clam) shell in growth position at 95. m elevation yields a U-series age of 195. ±. 31. ka, which corresponds to MIS 7. This age agrees with the best-fit uplift model for the island. Loose deposits of unaltered coral fragments found at elevations between 8 and 20. m yield U-series ages of <100. years and may represent paleotsunami deposits from previously undocumented tectonic activity in the region. © 2013 Elsevier Ltd

    CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin

    Get PDF
    Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8(+) Trm cells on a compartmental and functional basis. In human skin epithelia, CD8(+)CD49a(+) Trm cells produced interferon-γ, whereas CD8(+)CD49a(−) Trm cells produced interleukin-17 (IL-17). In addition, CD8(+)CD49a(+) Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8(+)CD49a(+) Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8(+)CD49a(–) Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8(+) Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Pharmacogenomic associations of adverse drug reactions in asthma:systematic review and research prioritisation

    Get PDF
    We would like to thank the NIHR Collaboration for Leadership in Applied Health Research and Care North West Coast (CLAHRC) for funding Amanda McKenna’s internship, and Charlotte Kings MPhil, and the members of the PiCA consortia for their help in completing the survey. U. Potočnik, K. Repnik and V. Berce were supported by SysPharmPedia grant, co-financed by Ministry of Education, Science and Sport of the Republic of Slovenia Author information These authors contributed equally: Charlotte King, Amanda McKenna These authors jointly supervised this work: Ian Sinha, Daniel B. HawcuttPeer reviewedPublisher PD

    Thorough assessment of DNA preservation from fossil bone and sediments excavated from a late Pleistocenee-Holocene cave deposit on Kangaroo Island, South Australia

    Get PDF
    Fossils and sediments preserved in caves are an excellent source of information for investigating impacts of past environmental changes on biodiversity. Until recently studies have relied on morphology-based palaeontological approaches, but recent advances in molecular analytical methods offer excellent potential for extracting a greater array of biological information from these sites. This study presents a thorough assessment of DNA preservation from late Pleistocene-Holocene vertebrate fossils and sediments from Kelly Hill Cave Kangaroo Island, South Australia. Using a combination of extraction techniques and sequencing technologies, ancient DNA was characterised from over 70 bones and 20 sediment samples from 15 stratigraphic layers ranging in age from >20 ka to ~6.8 ka. A combination of primers targeting marsupial and placental mammals, reptiles and two universal plant primers were used to reveal genetic biodiversity for comparison with the mainland and with the morphological fossil record for Kelly Hill Cave. We demonstrate that Kelly Hill Cave has excellent long-term DNA preservation, back to at least 20 ka. This contrasts with the majority of Australian cave sites thus far explored for ancient DNA preservation, and highlights the great promise Kangaroo Island caves hold for yielding the hitherto-elusive DNA of extinct Australian Pleistocene species

    Pharmacogenomic associations of adverse drug reactions in asthma: systematic review and research prioritisation

    Get PDF
    A systematic review of pharmacogenomic studies capturing adverse drug reactions (ADRs) related to asthma medications was undertaken, and a survey of Pharmacogenomics in Childhood Asthma (PiCA) consortia members was conducted. Studies were eligible if genetic polymorphisms were compared with suspected ADR(s) in a patient with asthma, as either a primary or secondary outcome. Five studies met the inclusion criteria. The ADRs and polymorphisms identified were change in lung function tests (rs1042713), adrenal suppression (rs591118), and decreased bone mineral density (rs6461639) and accretion (rs9896933, rs2074439). Two of these polymorphisms were replicated within the paper, but none had external replication. Priorities from PiCA consortia members (representing 15 institution in eight countries) for future studies were tachycardia (SABA/LABA), adrenal suppression/crisis and growth suppression (corticosteroids), sleep/behaviour disturbances (leukotriene receptor antagonists), and nausea and vomiting (theophylline). Future pharmacogenomic studies in asthma should collect relevant ADR data as well as markers of efficacy

    Identification of a novel splice variant form of the influenza a virus m2 ion channel with an antigenically distinct ectodomain

    Get PDF
    Segment 7 of influenza A virus produces up to four mRNAs. Unspliced transcripts encode M1, spliced mRNA2 encodes the M2 ion channel, while protein products from spliced mRNAs 3 and 4 have not previously been identified. The M2 protein plays important roles in virus entry and assembly, and is a target for antiviral drugs and vaccination. Surprisingly, M2 is not essential for virus replication in a laboratory setting, although its loss attenuates the virus. To better understand how IAV might replicate without M2, we studied the reversion mechanism of an M2-null virus. Serial passage of a virus lacking the mRNA2 splice donor site identified a single nucleotide pseudoreverting mutation, which restored growth in cell culture and virulence in mice by upregulating mRNA4 synthesis rather than by reinstating mRNA2 production. We show that mRNA4 encodes a novel M2-related protein (designated M42) with an antigenically distinct ectodomain that can functionally replace M2 despite showing clear differences in intracellular localisation, being largely retained in the Golgi compartment. We also show that the expression of two distinct ion channel proteins is not unique to laboratory-adapted viruses but, most notably, was also a feature of the 1983 North American outbreak of H5N2 highly pathogenic avian influenza virus. In identifying a 14th influenza A polypeptide, our data reinforce the unexpectedly high coding capacity of the viral genome and have implications for virus evolution, as well as for understanding the role of M2 in the virus life cycle
    corecore