553 research outputs found

    Charmless Three-Body Baryonic B Decays

    Full text link
    Motivated by recent data on B-> p pbar K decay, we study various charmless three-body baryonic B decay modes, including Lambda pbar pi, Sigma0 pbar pi, p pbar pi, p pbar Kbar0, in a factorization approach. These modes have rates of order 10^{-6}. There are two mechanisms for the baryon pair production, current-produced and transition. The behavior of decay spectra from these baryon production mechanisms can be understood by using QCD counting rules. Predictions on rates and decay spectra can be checked in the near future.Comment: 26 pages, 9 figures; version to appear in Phys. Rev.

    Heavy-to-light baryonic form factors at large recoil

    Full text link
    We analyze heavy-to-light baryonic form factors at large recoil and derive the scaling behavior of these form factors in the heavy quark limit. It is shown that only one universal form factor is needed to parameterize Lambda_b to p and Lambda_b to Lambda matrix elements in the large recoil limit of light baryons, while hadronic matrix elements of Lambda_b to Sigma transition vanish in the large energy limit of Sigma baryon due to the space-time parity symmetry. The scaling law of the soft form factor eta(P^{\prime} \cdot v), P^{\prime} and v being the momentum of nucleon and the velocity of Lambda_b baryon, responsible for Lambda_b to p transitions is also derived using the nucleon distribution amplitudes in leading conformal spin. In particular, we verify that this scaling behavior is in full agreement with that from light-cone sum rule approach in the heavy-quark limit. With these form factors, we further investigate the Lambda baryon polarization asymmetry alpha in Lambda_b to Lambda gamma and the forward-backward asymmetry A_{FB} in Lambda_b to Lambda l^{+} l^{-}. Both two observables (alpha and A_{FB}) are independent of hadronic form factors in leading power of 1/m_b and in leading order of alpha_s. We also extend the analysis of hadronic matrix elements for Omega_b to Omega transitions to rare Omega_b to Omega gamma and Omega_b to Omega l^{+} l^{-} decays and find that radiative Omega_b to Omega gamma decay is probably the most promising FCNC b to s radiative baryonic decay channel. In addition, it is interesting to notice that the zero-point of forward-backward asymmetry of Omega_b to Omega l^{+} l^{-} is the same as the one for Lambda_b to Lambda l^{+} l^{-} to leading order accuracy provided that the form factors \bar{\zeta}_i (i=3, 4, 5) are numerically as small as indicated from the quark model.Comment: 19 page

    Observation of the Decays B0->K+pi-pi0 and B0->rho-K+

    Get PDF
    We report the observation of B^0 decays to the K^+pi^-pi^0 final state using a data sample of 78 fb^-1 collected by the Belle detector at the KEKB e^+e^- collider. With no assumptions about intermediate states in the decay, the branching fraction is measured to be (36.6^{+4.2}_{-4.3}+- 3.0)*10^-6.We also search for B decays to intermediate two-body states with the same K^+pi^-pi^0 final state. Significant B signals are observed in the rho(770)^- K^+ and K^*(892)^+pi^- channels, with branching fractions of (15.1^{+3.4+1.4+2.0}_{-3.3-1.5-2.1})* 10^-6 and (14.8^{+4.6+1.5+2.4}_{-4.4-1.0-0.9})* 10^-6, respectively. The first error is statistical, the second is systematic and the third is due to the largest possible interference. Contributions from other possible two-body states will be discussed. No CP asymmetry is found in the inclusive K^+pi^-pi^0 or rho^-K^+ modes, and we set 90% confidence level bounds on the asymmetry of -0.12<A_{CP}<0.26 and -0.18<A_{CP}<0.64, respectively.Comment: 18 pages, 7 figure

    Simultaneous Clustering of Multiple Gene Expression and Physical Interaction Datasets

    Get PDF
    Many genome-wide datasets are routinely generated to study different aspects of biological systems, but integrating them to obtain a coherent view of the underlying biology remains a challenge. We propose simultaneous clustering of multiple networks as a framework to integrate large-scale datasets on the interactions among and activities of cellular components. Specifically, we develop an algorithm JointCluster that finds sets of genes that cluster well in multiple networks of interest, such as coexpression networks summarizing correlations among the expression profiles of genes and physical networks describing protein-protein and protein-DNA interactions among genes or gene-products. Our algorithm provides an efficient solution to a well-defined problem of jointly clustering networks, using techniques that permit certain theoretical guarantees on the quality of the detected clustering relative to the optimal clustering. These guarantees coupled with an effective scaling heuristic and the flexibility to handle multiple heterogeneous networks make our method JointCluster an advance over earlier approaches. Simulation results showed JointCluster to be more robust than alternate methods in recovering clusters implanted in networks with high false positive rates. In systematic evaluation of JointCluster and some earlier approaches for combined analysis of the yeast physical network and two gene expression datasets under glucose and ethanol growth conditions, JointCluster discovers clusters that are more consistently enriched for various reference classes capturing different aspects of yeast biology or yield better coverage of the analysed genes. These robust clusters, which are supported across multiple genomic datasets and diverse reference classes, agree with known biology of yeast under these growth conditions, elucidate the genetic control of coordinated transcription, and enable functional predictions for a number of uncharacterized genes

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Searches for B0(s)→J/ψppˉ and B+→J/ψppˉπ+ decays

    Get PDF
    The results of searches for B0(s)→J/ψ pp¯ and B + → J/ψ p p¯ π+ decays are reported. The analysis is based on a data sample, corresponding to an integrated luminosity of 1.0 fb−1 of pp collisions, collected with the LHCb detector. An excess with 2.8 σ significance is seen for the decay B0s→J/ψ pp¯ and an upper limit on the branching fraction is set at the 90 % confidence level: B(B0s→J/ψ pp¯) < 4.8 × 10−6, which is the first such limit. No significant signals are seen for B0 → J/ψ pp¯ and B+ → J/ψ pp¯ π + decays, for which the corresponding limits are set: B(B0→J/ψ pp¯) < 5.2 × 10−7, which significantly improves the existing limit; and B(B+→J/ψ pp¯π+) < 5.0 × 10−7, which is the first limit on this branching fraction

    Study of the decay mechanism for B+ to p pbar K+ and B+ to p pbar pi+

    Full text link
    We study the characteristics of the low mass ppbar enhancements near threshold in the three-body decays B+ to p pbar K+ and B+ to p pbar pi+. We observe that the proton polar angle distributions in the ppbar helicity frame in the two decays have the opposite polarity, and measure the forward-backward asymmetries as a function of the ppbar mass for the p pbar K+ mode. We also search for the intermediate two-body decays, B+ to pbar Delta++ and B+ to p Delta0bar, and set upper limits on their branching fractions. These results are obtained from a 414 fb^{-1} data sample that contains 449 times 10^6 BBbar events collected near the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+ e- collider.Comment: 15 pages, 5 figures (14 figure files), revisions to Phys. Lett.

    The Core and Accessory Genomes of Burkholderia pseudomallei: Implications for Human Melioidosis

    Get PDF
    Natural isolates of Burkholderia pseudomallei (Bp), the causative agent of melioidosis, can exhibit significant ecological flexibility that is likely reflective of a dynamic genome. Using whole-genome Bp microarrays, we examined patterns of gene presence and absence across 94 South East Asian strains isolated from a variety of clinical, environmental, or animal sources. 86% of the Bp K96243 reference genome was common to all the strains representing the Bp “core genome”, comprising genes largely involved in essential functions (eg amino acid metabolism, protein translation). In contrast, 14% of the K96243 genome was variably present across the isolates. This Bp accessory genome encompassed multiple genomic islands (GIs), paralogous genes, and insertions/deletions, including three distinct lipopolysaccharide (LPS)-related gene clusters. Strikingly, strains recovered from cases of human melioidosis clustered on a tree based on accessory gene content, and were significantly more likely to harbor certain GIs compared to animal and environmental isolates. Consistent with the inference that the GIs may contribute to pathogenesis, experimental mutation of BPSS2053, a GI gene, reduced microbial adherence to human epithelial cells. Our results suggest that the Bp accessory genome is likely to play an important role in microbial adaptation and virulence

    Analysis of LhcSR3, a Protein Essential for Feedback De-Excitation in the Green Alga Chlamydomonas reinhardtii

    Get PDF
    To prevent photodamage by excess light, plants use different proteins to sense pH changes and to dissipate excited energy states. In green microalgae, however, the LhcSR3 gene product is able to perform both pH sensing and energy quenching functions

    Nuclear Export and Import of Human Hepatitis B Virus Capsid Protein and Particles

    Get PDF
    It remains unclear what determines the subcellular localization of hepatitis B virus (HBV) core protein (HBc) and particles. To address this fundamental issue, we have identified four distinct HBc localization signals in the arginine rich domain (ARD) of HBc, using immunofluorescence confocal microscopy and fractionation/Western blot analysis. ARD consists of four tight clustering arginine-rich subdomains. ARD-I and ARD-III are associated with two co-dependent nuclear localization signals (NLS), while ARD-II and ARD-IV behave like two independent nuclear export signals (NES). This conclusion is based on five independent lines of experimental evidence: i) Using an HBV replication system in hepatoma cells, we demonstrated in a double-blind manner that only the HBc of mutant ARD-II+IV, among a total of 15 ARD mutants, can predominantly localize to the nucleus. ii) These results were confirmed using a chimera reporter system by placing mutant or wild type HBc trafficking signals in the heterologous context of SV40 large T antigen (LT). iii) By a heterokaryon or homokaryon analysis, the fusion protein of SV40 LT-HBc ARD appeared to transport from nuclei of transfected donor cells to nuclei of recipient cells, suggesting the existence of an NES in HBc ARD. This putative NES is leptomycin B resistant. iv) We demonstrated by co-immunoprecipitation that HBc ARD can physically interact with a cellular factor TAP/NXF1 (Tip-associated protein/nuclear export factor-1), which is known to be important for nuclear export of mRNA and proteins. Treatment with a TAP-specific siRNA strikingly shifted cytoplasmic HBc to nucleus, and led to a near 7-fold reduction of viral replication, and a near 10-fold reduction in HBsAg secretion. v) HBc of mutant ARD-II+IV was accumulated predominantly in the nucleus in a mouse model by hydrodynamic delivery. In addition to the revised map of NLS, our results suggest that HBc could shuttle rapidly between nucleus and cytoplasm via a novel TAP-dependent NES
    corecore