1,242 research outputs found

    Determination of Optimal Cell and Plasmid Concentration for Transfection of I-SceI by DR-GFP Reporter

    Get PDF
    https://openworks.mdanderson.org/sumexp21/1195/thumbnail.jp

    Asymmetric magnetization reversal in exchange biased polycrystalline F/AF bilayers

    Full text link
    This paper describes a model for magnetization reversal in polycrystalline Ferromagnetic/Antiferromagnetic exchange biased bilayers. We assume that the exchange energy can be expanded into cosine power series. We show that it is possible to fit experimental asymmetric shape of hysteresis loops in exchange biased bilayer for any direction of the applied field. The hysteresis asymmetry is discussed in terms of energy considerations. An angle beta is introduced to quantify the easy axis dispersion of AF grains.Comment: 15 pages, 4 figure

    The Financial Crisis and Temporary Liquidity Guarantee Program: Their Impact on Fixed-Income Markets

    Get PDF

    Well-posedness of Hydrodynamics on the Moving Elastic Surface

    Full text link
    The dynamics of a membrane is a coupled system comprising a moving elastic surface and an incompressible membrane fluid. We will consider a reduced elastic surface model, which involves the evolution equations of the moving surface, the dynamic equations of the two-dimensional fluid, and the incompressible equation, all of which operate within a curved geometry. In this paper, we prove the local existence and uniqueness of the solution to the reduced elastic surface model by reformulating the model into a new system in the isothermal coordinates. One major difficulty is that of constructing an appropriate iterative scheme such that the limit system is consistent with the original system.Comment: The introduction is rewritte

    The associations between lumbar proprioception and postural control during and after calf vibration in people with and without chronic low back pain

    Get PDF
    The relationships of lumbar proprioception with postural control have not been clarified in people with chronic low back pain. This study aimed to compare the associations between lumbar proprioception and postural control in response to calf vibration in individuals with and without chronic low back pain. In this study, we recruited twenty patients with chronic low back pain (CLBP group) and twenty healthy control subjects (HC group) aged between 18 and 50 years. This study was a cross-sectional study and completed from May 2022 to October 2022. The passive joint repositioning sense (PJRS) test for two positions (15° and 35°) were used to assess lumbar proprioception and expressed as the mean of reposition error (RE). Postural control was tested by adding and removing calf vibration while standing on a stable force plate with eyes closed. The sway velocity in the anterior-posterior (AP) direction of center of pressure (COP) data with a window of 15s epoch at baseline, during and after calf vibration was used to evaluate postural control. Mann-Whitney U-tests were used to compare the difference of lumbar proprioception between two groups, and the independent t-tests were used to compare the difference of postural control at baseline and during vibration, and a mixed design ANOVA was used to compare the difference of postural control during post-perturbation. In addition, to explore the association between postural control and lumbar proprioception and pain intensity, Spearman’s correlations were used for each group. The major results are: (1) significantly higher PJRS on RE of 15° (CLBP: 95% CI [2.03, 3.70]; HC: 95% CI [1.03, 1.93]) and PJRS on RE of 35° (CLBP: 95% CI [2.59, 4.88]; HC: 95% CI [1.07, 3.00]) were found in the CLBP group; (2) AP velocity was not different between the CLBP group and the HC group at baseline and during calf vibration. However, AP velocity was significantly larger in the CLBP group compared with the HC group at epoch 2–14 after calf vibration, and AP velocity for the CLBP group took a longer time (23 epochs) to return to the baseline after calf vibration compared with the HC group (9 epochs); (3) lumbar proprioception represented by PJRS on RE of 15°correlated negatively with AP velocity during and after vibration for the HC group. Within the CLBP group, no significant relationships between PJRS on RE for two positions (15° and 35°) and AP velocity in any postural phases were found. In conclusion, the CLBP group has poorer lumbar proprioception, slower proprioceptive reweighting and impaired postural control after calf vibration compared to the HC group. Lumbar proprioception offers different information on the control strategy of standing control for individuals with and without CLBP in the situations with proprioceptive disturbance. These results highlight the significance of assessing lumbar proprioception and postural control in CLBP patients

    AR2, a novel automatic muscle artifact reduction software method for ictal EEG interpretation: Validation and comparison of performance with commercially available software.

    Get PDF
    Objective: To develop a novel software method (AR2) for reducing muscle contamination of ictal scalp electroencephalogram (EEG), and validate this method on the basis of its performance in comparison to a commercially available software method (AR1) to accurately depict seizure-onset location. Methods: A blinded investigation used 23 EEG recordings of seizures from 8 patients. Each recording was uninterpretable with digital filtering because of muscle artifact and processed using AR1 and AR2 and reviewed by 26 EEG specialists. EEG readers assessed seizure-onset time, lateralization, and region, and specified confidence for each determination. The two methods were validated on the basis of the number of readers able to render assignments, confidence, the intra-class correlation (ICC), and agreement with other clinical findings. Results: Among the 23 seizures, two-thirds of the readers were able to delineate seizure-onset time in 10 of 23 using AR1, and 15 of 23 using AR2 (

    Preconditioning of Cardiosphere-Derived Cells With Hypoxia or Prolyl-4-Hydroxylase Inhibitors Increases Stemness and Decreases Reliance on Oxidative Metabolism

    Get PDF
    Cardiosphere-derived cells (CDCs), which can be isolated from heart explants, are a promising candidate cell source for infarcted myocardium regeneration. However, current protocols used to expand CDCs require at least 1 month in vitro to obtain sufficient cells for transplantation. We report that CDC culture can be optimized by preconditioning the cells under hypoxia (2% oxygen), which may reflect the physiological oxygen level of the stem cell niche. Under hypoxia, the CDC proliferation rate increased by 1.4-fold, generating 6 × 10(6) CDCs with higher expression of cardiac stem cell and pluripotency gene markers compared to normoxia. Furthermore, telomerase (TERT), cytokines/ligands involved in stem cell trafficking (SDF/CXCR-4), erythropoiesis (EPO), and angiogenesis (VEGF) were increased under hypoxia. Hypoxic preconditioning was mimicked by treatment with two types of hypoxia-inducible factor (HIF) prolyl-4-hydroxylase inhibitors (PHDIs): dimethyloxaloylglycine (DMOG) and 2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetic acid (BIC). Despite the difference in specificity, both PHDIs significantly increased c-Kit expression and activated HIF, EPO, and CXCR-4. Furthermore, treatment with PHDIs for 24 h increased cell proliferation. Notably, all hypoxic and PHDI-preconditioned CDCs had decreased oxygen consumption and increased glycolytic metabolism. In conclusion, cells cultured under hypoxia could have potentially enhanced therapeutic potential, which can be mimicked, in part, by PHDIs

    On the finite-time splash and splat singularities for the 3-D free-surface Euler equations

    Full text link
    We prove that the 3-D free-surface incompressible Euler equations with regular initial geometries and velocity fields have solutions which can form a finite-time "splash" (or "splat") singularity first introduced in [9], wherein the evolving 2-D hypersurface, the moving boundary of the fluid domain, self-intersects at a point (or on surface). Such singularities can occur when the crest of a breaking wave falls unto its trough, or in the study of drop impact upon liquid surfaces. Our approach is founded upon the Lagrangian description of the free-boundary problem, combined with a novel approximation scheme of a finite collection of local coordinate charts; as such we are able to analyze a rather general set of geometries for the evolving 2-D free-surface of the fluid. We do not assume the fluid is irrotational, and as such, our method can be used for a number of other fluid interface problems, including compressible flows, plasmas, as well as the inclusion of surface tension effects.Comment: 40 pages, 5 figures, to appear in Comm. Math. Phys, abstract added for UK RE

    Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network.

    Get PDF
    Grid cells fire in sequences that represent rapid trajectories in space. During locomotion, theta sequences encode sweeps in position starting slightly behind the animal and ending ahead of it. During quiescence and slow wave sleep, bouts of synchronized activity represent long trajectories called replays, which are well-established in place cells and have been recently reported in grid cells. Theta sequences and replay are hypothesized to facilitate many cognitive functions, but their underlying mechanisms are unknown. One mechanism proposed for grid cell formation is the continuous attractor network. We demonstrate that this established architecture naturally produces theta sequences and replay as distinct consequences of modulating external input. Driving inhibitory interneurons at the theta frequency causes attractor bumps to oscillate in speed and size, which gives rise to theta sequences and phase precession, respectively. Decreasing input drive to all neurons produces traveling wavefronts of activity that are decoded as replays
    corecore