1,525 research outputs found
The Power of Duples (in Self-Assembly): It's Not So Hip To Be Square
In this paper we define the Dupled abstract Tile Assembly Model (DaTAM),
which is a slight extension to the abstract Tile Assembly Model (aTAM) that
allows for not only the standard square tiles, but also "duple" tiles which are
rectangles pre-formed by the joining of two square tiles. We show that the
addition of duples allows for powerful behaviors of self-assembling systems at
temperature 1, meaning systems which exclude the requirement of cooperative
binding by tiles (i.e., the requirement that a tile must be able to bind to at
least 2 tiles in an existing assembly if it is to attach). Cooperative binding
is conjectured to be required in the standard aTAM for Turing universal
computation and the efficient self-assembly of shapes, but we show that in the
DaTAM these behaviors can in fact be exhibited at temperature 1. We then show
that the DaTAM doesn't provide asymptotic improvements over the aTAM in its
ability to efficiently build thin rectangles. Finally, we present a series of
results which prove that the temperature-2 aTAM and temperature-1 DaTAM have
mutually exclusive powers. That is, each is able to self-assemble shapes that
the other can't, and each has systems which cannot be simulated by the other.
Beyond being of purely theoretical interest, these results have practical
motivation as duples have already proven to be useful in laboratory
implementations of DNA-based tiles
Associated production of charged Higgs bosons and top quarks with POWHEG
The associated production of charged Higgs bosons and top quarks at hadron
colliders is an important discovery channel to establish the existence of a
non-minimal Higgs sector. Here, we present details of a next-to-leading order
(NLO) calculation of this process using the Catani-Seymour dipole formalism and
describe its implementation in POWHEG, which allows to match NLO calculations
to parton showers. Numerical predictions are presented using the PYTHIA parton
shower and are compared to those obtained previously at fixed order, to a
leading order calculation matched to the PYTHIA parton shower, and to a
different NLO calculation matched to the HERWIG parton shower with MC@NLO. We
also present numerical predictions and theoretical uncertainties for various
Two Higgs Doublet Models at the Tevatron and LHC.Comment: 36 page
Total photoproduction cross-section at very high energy
In this paper we apply to photoproduction total cross-section a model we have
proposed for purely hadronic processes and which is based on QCD mini-jets and
soft gluon re-summation. We compare the predictions of our model with the HERA
data as well as with other models. For cosmic rays, our model predicts
substantially higher cross-sections at TeV energies than models based on
factorization but lower than models based on mini-jets alone, without soft
gluons. We discuss the origin of this difference.Comment: 13 pages, 9 figures. Accepted for publication in EPJC. Changes
concern added references, clarifications of the Soft Gluon Resummation method
used in the paper, and other changes requested by the Journal referee which
do not change the results of the original versio
Model Analysis of Time Reversal Symmetry Test in the Caltech Fe-57 Gamma-Transition Experiment
The CALTECH gamma-transition experiment testing time reversal symmetry via
the E2/M1 mulipole mixing ratio of the 122 keV gamma-line in Fe-57 has already
been performed in 1977. Extending an earlier analysis in terms of an effective
one-body potential, this experiment is now analyzed in terms of effective one
boson exchange T-odd P-even nucleon nucleon potentials. Within the model space
considered for the Fe-57 nucleus no contribution from isovector rho-type
exchange is possible. The bound on the coupling strength phi_A from effective
short range axial-vector type exchange induced by the experimental bound on
sin(eta) leads to phi_A < 10^{-2}.Comment: 5 pages, RevTex 3.
BESII Detector Simulation
A Monte Carlo program based on Geant3 has been developed for BESII detector
simulation. The organization of the program is outlined, and the digitization
procedure for simulating the response of various sub-detectors is described.
Comparisons with data show that the performance of the program is generally
satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
Quantitative evaluation of motor function before and after engraftment of dopaminergic neurons in a rat model of Parkinson's disease
Although gait change is considered a useful indicator of severity in animal models of Parkinson's disease, systematic and extensive gait analysis in animal models of neurological deficits is not well established. The CatWalk-assisted automated gait analysis system provides a comprehensive way to assess a number of dynamic and static gait parameters simultaneously. In this study, we used the Catwalk system to investigate changes in gait parameters in adult rats with unilateral 6-OHDA-induced lesions and the rescue effect of dopaminergic neuron transplantation on gait function. Four weeks after 6-OHDA injection, the intensity and maximal area of contact were significantly decreased in the affected paws and the swing speed significantly decreased in all four paws. The relative distance between the hind paws also increased, suggesting that animals with unilateral 6-OHDA-induced lesions required all four paws to compensate for loss of balance function. At 8 weeks post-transplantation, engrafted dopaminergic neurons expressed tyrosine hydroxylase. In addition, the intensity, contact area, and swing speed of the four limbs increased and the distance between the hind paws decreased. Partial recovery of methamphetamine-induced rotational response was also noted
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
- …
