50 research outputs found

    Domain regime in two-dimensional disordered vortex matter

    Full text link
    A detailed numerical study of the real space configuration of vortices in disordered superconductors using 2D London-Langevin model is presented. The magnetic field BB is varied between 0 and Bc2B_{c2} for various pinning strengths Δ\Delta. For weak pinning, an inhomogeneous disordered vortex matter is observed, in which the topologically ordered vortex lattice survives in large domains. The majority of the dislocations in this state are confined to the grain boundaries/domain walls. Such quasi-ordered configurations are observed in the intermediate fields, and we refer it as the domain regime (DR). The DR is distinct from the low-field and the high-fields amorphous regimes which are characterized by a homogeneous distribution of defects over the entire system. Analysis of the real space configuration suggests domain wall roughening as a possible mechanism for the crossover from the DR to the high-field amorphous regime. The DR also shows a sharp crossover to the high temperature vortex liquid phase. The domain size distribution and the roughness exponent of the lattice in the DR are also calculated. The results are compared with some of the recent Bitter decoration experiments.Comment: 9 pages, 9 figure

    X-ray Spectroscopy of Cooling Clusters

    Full text link
    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.Comment: To appear in Physics Reports, 71 pages, 20 figure

    Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics

    Get PDF
    We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) ows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several special applications in heliophysics and astrophysics, assessing triumphs, challenges,and future directions

    Steroid-sparing agents in giant cell arteritis

    Get PDF
    Background: Giant cell arteritis is the commonest form of medium-to-large vessel vasculitis, requiring long-term corticosteroid therapy. The short- and long-term side effects of corticosteroids are many, including weight gain, psychological effects, osteoporosis, cardiometabolic complications, and infections. Materials and Methods: Various agents used in place of or in combination with corticosteroids to reduce corticosteroid-related side effects were reviewed. However, considerable variation in practice was identified giving unclear guidance. This review included the most recent evidence on methotrexate, mycophenolate mofetil, azathioprine, cyclophosphamide, abatacept, and tocilizumab Results and Discussion: Also discussed are encouraging results with tocilizumab in GCA patients. Amongst the agents available for steroid-sparing effects, tocilizumab demonstrated the most robust data and is consequently recommended as the agent of choice for steroid-sparing, for remission induction, remission maintenance, and treating relapsing and refractory cases of GCA.Published versio

    What causes hidradenitis suppurativa ?—15 years after

    Get PDF
    The 14 authors of the first review article on hidradenitis suppurativa (HS) pathogenesis published 2008 in EXPERIMENTAL DERMATOLOGY cumulating from the 1st International Hidradenitis Suppurativa Research Symposium held March 30–April 2, 2006 in Dessau, Germany with 33 participants were prophetic when they wrote “Hopefully, this heralds a welcome new tradition: to get to the molecular heart of HS pathogenesis, which can only be achieved by a renaissance of solid basic HS research, as the key to developing more effective HS therapy.” (Kurzen et al. What causes hidradenitis suppurativa? Exp Dermatol 2008;17:455). Fifteen years later, th

    The FIELDS Instrument Suite for Solar Probe Plus

    Get PDF

    Analysis of non-Newtonian entrance flow in a 90° curved tube

    No full text

    Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS

    No full text
    Satellite remote sensing coupled with Geographical Information Systems (GIS) offers an excellent alternative to conventional mapping techniques in monitoring and mapping of surface and sub-surface waterlogged areas. In the present study, pre-monsoon and post-monsoon surface waterlogged areas were delineated in all the 132 irrigation command areas of the Bihar State, India using Indian Remote Sensing (IRS-1D) Linear Imaging Self Scanning Sensor (LISS-III) data acquired during the period 2002-2003. Normalized Difference Water Index (NDWI) was used primarily to delineate surface waterlogged areas. Perennial waterlogged and seasonal waterlogged areas were identified for the study area by integrating the waterlogged areas derived for both the pre- and post-monsoon seasons under GIS environment. Results show that the total surface waterlogged area in Bihar is 628 x 103 ha, which is 10.57% of command area (5939 - 103 ha) and spread over 132 command areas. Perennial surface inundation covers 2.95% of the waterlogged area in all the command areas. Maximum waterlogged area is observed in Gandak command (212 - 103 ha) followed by Eastern Kosi irrigation scheme (116 - 103 ha) and Sone modernization scheme (82 - 103 ha), respectively. Further, waterlogged areas induced by rise in groundwater level were also assessed spatially under GIS environment using the ground water level data pertaining to pre- and post-monsoon seasons of the year 2002-2003 which were spread all over the study area. The analysis of pre- and post-monsoon groundwater levels indicates that the area under non-critical category during pre-monsoon period was reduced from 4287 - 103 ha (72.72% of command) to 1391 - 103 ha (23.42%) in the post-monsoon. Area under most critical category during post-monsoon period increased from 0.083 - 103 ha of command area in pre-monsoon period to 50 - 103 ha. The study demonstrates utility of integration of remote sensing and GIS techniques for assessment of waterlogged areas particularly in regions where waterlogging conditions occur both due to excessive irrigation and accumulation of rain and floodwaters.
    corecore