123 research outputs found

    Manifestation of quantum resonances and antiresonances in a finite temperature dilute atomic gas

    Get PDF
    We investigate the effect of temperature on resonant and antiresonant dynamics in a dilute atomic gas kicked periodically by a standing-wave laser field. Our numerical calculations are based on a Monte Carlo method for an incoherent mixture of noninteracting plane waves, and show that the atomic dynamics are highly sensitive to the initial momentum width of the gas. We explain this sensitivity by examining the time evolution of individual atomic center-of-mass momentum eigenstates with varying quasimomentum, and we determine analytic expressions for the evolution of the second-order momentum moment to illustrate the range of behaviors

    Sex differences in heel pad stiffness during in vivo loading and unloading

    Get PDF
    Due to conflicting data from previous studies a new methodological approach to evaluate heel pad stiffness and soft tissue deformation has been developed. The purpose of this study was to compare heel pad (HP) stiffness in both limbs between males and females during a dynamic unloading and loading activity. Ten males and 10 females volunteered to perform three dynamic trials to unload and load the HP. The dynamic protocol consisted of three continuous phases: foot flat (baseline phase), bilateral heel raise (unloading phase) and foot flat (loading phase) with each phase lasting two seconds. Six retroreflective markers (3 mm) were attached to the skin of the left and right heels using a customised marker set. Three-dimensional motion analysis cameras synchronised with force plates collected the kinematic and kinetic data throughout the trials. Three-way repeated measures ANOVA together with a Bonferroni post hoc test were applied to the stiffness and marker displacement datasets. On average, HP stiffness was higher in males than females during the loading and unloading phases. ANOVA results revealed no significant differences for the stiffness and displacement outputs with respect to sex, sidedness or phase interactions (p > .05) in the X, Y and Z directions. Irrespective of direction, there were significant differences in stiffness between the baseline and unloading conditions (p .116). Finally, females portrayed lower levels of mean HP stiffness whereas males had stiffer heels particularly in the vertical direction (Z) when the HP was both unloaded and loaded. High HP stiffness values and very small marker displacements could be valuable indicators for the risk of pathological foot conditions

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Overview of the JET results in support to ITER

    Get PDF

    Power-law behavior in the quantum-resonant evolution of the delta-kicked accelerator

    Get PDF
    We consider the atom-optical delta-kicked accelerator when the initial momentum distribution is symmetric. We demonstrate the existence of quantum-resonant dynamics, and derive analytic expressions for the system evolution. In particular, we consider the dynamical evolution of the momentum moments and find that all even-ordered momentum moments exhibit a power-law growth. In the ultracold (zero-temperature) limit the exponent is determined by the order of the moment, whereas for a broad, thermal initial momentum distribution the exponent is reduced by 1. To demonstrate the power-law behavior explicitly we consider the evolutions of the second- and fourth-order momentum moments, and cumulants, for an initially Gaussian momentum distribution corresponding to the Maxwell-Boltzmann distribution of an ideal gas at thermal equilibrium

    Fractional resonances in the atom-optical delta-kicked accelerator

    Get PDF
    We consider resonant dynamics in a dilute atomic gas falling under gravity through a periodically pulsed standing-wave laser field. Our numerical calculations are based on a Monte Carlo method for an incoherent mixture of noninteracting plane waves, and we show that quantum resonances are highly sensitive to the relative acceleration between the atomic gas and the pulsed optical standing wave. For particular values of the atomic acceleration, we observe fractional resonances. We investigate the effect of the initial atomic momentum width on the fractional resonances and quantify the sensitivity of fractional resonances to thermal effects
    corecore