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We consider the atom-optical �-kicked accelerator when the initial momentum distribution is symmetric. We
demonstrate the existence of quantum-resonant dynamics, and derive analytic expressions for the system
evolution. In particular, we consider the dynamical evolution of the momentum moments and find that all
even-ordered momentum moments exhibit a power-law growth. In the ultracold �zero-temperature� limit the
exponent is determined by the order of the moment, whereas for a broad, thermal initial momentum distribu-
tion the exponent is reduced by 1. To demonstrate the power-law behavior explicitly we consider the evolutions
of the second- and fourth-order momentum moments, and cumulants, for an initially Gaussian momentum
distribution corresponding to the Maxwell-Boltzmann distribution of an ideal gas at thermal equilibrium.
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I. INTRODUCTION

Quantum resonances and antiresonances �1–20� are strik-
ing signatures of ordered quantum manifestations in the
�-kicked rotor, a paradigm system in the study of classical
�21� and quantum chaotic dynamics �22–24�. The atom-
optical realization of the �-kicked rotor �more accurately de-
noted the �-kicked particle� has in recent years proved to be
a fertile testing ground for quantum-chaotic phenomena
�14–19,25–43�. An important variant is the �-kicked accel-
erator, where the kicking potential is aligned parallel to the
local gravitational acceleration �44–55�. This gives rise to
phenomena closely related to quantum resonances, for ex-
ample quantum accelerator modes, and fractional quantum
resonances �56�. Such atom-optical realizations involve sub-
jecting a cold, dilute atomic gas to a periodically pulsed laser
standing wave. The amplitude, phase, periodicity, and dura-
tion of the pulses can be controlled to a high degree of pre-
cision, allowing theoretical predictions to be thoroughly in-
vestigated.

In this paper we investigate the quantum-resonant behav-
ior �5–19� of laser-driven clouds of freely falling, laser-
cooled atoms. Such a system closely models the �-kicked
accelerator, of which the �-kicked particle is a particular
case. Experimentally, the system dynamics are typically in-
terrogated by measuring the atomic center-of mass momen-
tum distribution, using a time-of-flight technique �46�. Al-
though there are practical resolution limits, it is then in
principle possible to determine all momentum moments from
the measured distribution. A limited number of moments is
frequently sufficient to characterize the system: the second-
order momentum moment provides a clear signature to dis-
tinguish between quantum-resonant dynamics and dynamical
localization in the �-kicked particle �57�, whereas the fourth-
order moment is necessary to distinguish between different
fractional quantum resonances in the �-kicked accelerator at
finite temperature �56�. The momentum moments therefore
provide conceptually simple measures to characterize the ef-
fect of quantum resonant dynamics on the atomic center-of-

mass momentum distribution. The main focus of this paper is
to provide fully analytical predictions of the momentum-
moment dynamics of the atom-optical �-kicked accelerator
under certain physically motivated conditions. We present
detailed derivations of the key analytical results utilized in
Saunders et al. �56,57�.

Assuming only that the initial momentum distribution is
symmetric, we find that the time evolution of all even-
momentum moments follows power-law behaviors, and ex-
amine how such behavior differs between the opposing limits
of the initial distribution being either extremely narrow or
broad. Assuming the Maxwell-Boltzmann distribution for an
ideal gas, we determine explicit analytic expressions for the
time evolution of the second- and fourth-order momentum
moments when the gas is initially in an ultracold limit, or at
finite temperature. We also outline a procedure for calculat-
ing higher-order momentum moments for a given �but arbi-
trary� initial momentum distribution. Although we neglect
two-body interactions, we note that our model can also be
used to describe Bose-Einstein condensates where the scat-
tering length has been made negligibly small by tuning
around a Feshbach resonance �58–61�.

The paper is organized as follows. In Sec. II we sketch
our theoretical model for the atom-optical �-kicked accelera-
tor, derive the time evolution operator from which the time
evolution of the momentum moments can be determined, and
derive general conditions for which antiresonance and reso-
nance occur. In Sec. III we consider only momentum distri-
butions that are initially symmetric, and discuss the power-
law behavior of the evolution of the even-ordered
momentum moments in the two limits of narrow and broad
initial momentum distributions. In Sec. IV we consider the
time evolution of the second- and fourth-order momentum
moments and cumulants for momentum distributions that are
initially Gaussian, that is, corresponding to a finite-
temperature ideal gas. Section V consists of the conclusions,
which are then followed by five technical appendixes.
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II. ATOM-OPTICAL �-KICKED ACCELERATOR

A. System Hamiltonian

We consider a cloud of trapped and laser-cooled alkali-
metal atoms. The cloud is released from the trap and ad-
dressed by an appropriate configuration of off-resonant laser
beams forming a vertically aligned, pulsed, sinusoidal poten-
tial. We neglect atomic interactions and treat the cloud as an
ensemble of single-particle systems with Hamiltonian
�46,56�

Ĥ =
p̂2

2M
+ Maẑ −

��R
2

8�
cos�Kẑ�f�t� . �1�

Here p̂ and ẑ are the center-of-mass momentum and position
operators, �R is the Rabi frequency, K /2 is the magnitude of
the laser wavevector along the z direction, M is the mass, �
is the detuning, and f�t� describes the periodic pulses. The
parameter a is the relative acceleration between the atomic
cloud and the optical standing-wave potential and is in gen-
eral given by a�g−a�, where g is the local gravitational
acceleration and a� can be chosen with high precision by
tuning the relative phase of the laser beams creating the op-
tical field �56�. When a is set to zero, we recover the atom-
optical �-kicked rotor �57�.

We assume the pulse duration to be sufficiently short for
the atoms to be in the Raman-Nath regime, i.e., the displace-
ment of the atoms during the pulse is significantly less than
the wavelength of the standing wave. Hence, to a good ap-
proximation, the pulses may be modeled as a train of � func-
tions �57� giving the quantum �-kicked accelerator Hamil-
tonian �46�

Ĥ�ka =
p̂2

2M
+ Maẑ − ��d cos�Kẑ��

n=0

�

��t − nT� , �2�

where �d��R
2 tp /8�, tp is the pulse duration, and T is the

pulse periodicity. For convenience we apply the unitary op-

erator Û=exp�iMaẑ /�� �52–54�, to transform Hamiltonian
�2� to the spatially periodic form

H̃�ka =
�p̂ − Mat�2

2M
− ��d cos�Kẑ��

n=0

�

��t − nT� , �3�

for which we can invoke Bloch theory �57,62�.

B. Time evolution

1. Transformed Floquet operator

The �-kicked accelerator Hamiltonian �2� is periodic in
time, and the system evolution can be described in terms of a
Floquet �kick-to-kick time evolution� operator. The trans-
formed Floquet operator corresponding to the transformed

Hamiltonian �3� is exp�−iMa2T3�3n2−3n+1� /6��F̃n �54,56�,
where

F̃n = e−i��K2�k̂ + �̂�2T/2M−Ka�k̂+�̂��2n−1�T2/2�ei�d cos��̂�, �4�

i.e., we absorb a global phase into the definition of F̃n.1 We
have separated the momentum and position operators into
discrete and continuous components �54�:

ẑ = K−1�2	l̂ + �̂�, p̂ = �K�k̂ + �̂� , �5�

where the eigenvalues of l̂ and k̂ are integers, and the eigen-

values of �̂ and �̂ are �� �−	 ,	� and �� �−1 /2,1 /2�.
Because the Hamiltonian �3� is periodic in space, the qua-

simomentum � is conserved �52,53�, i.e., �̂ commutes with

H̃�ka �54� and only momentum eigenstates with eigenvalues
differing by integer multiples of �K are coupled �46�. There-
fore, within a particular quasimomentum subspace, the dy-
namics are determined by

F̃n��� = e−i��K2�k̂ + ��2T/2M−Ka�k̂+���2n−1�T2/2�ei�d cos��̂�. �6�

As is the case for the �-kicked rotor or particle, quantum
resonances or antiresonances occur when T=�TT /2 �57�,
where TT=4	M /�K2 is the Talbot time �45� �so named in
analogy with the Talbot effect in optics �63��. In this case,
Eq. �6� becomes

F̃n��� = e−i	����−��2n−1��e−i	��−��2n−1�+2���k̂ei�d cos��̂�, �7�

where we have used exp�−i�	k̂2�=exp�−i�	k̂�, and intro-
duced the dimensionless effective gravitational acceleration
�=KaT2 /2	 �50�.

2. Time evolution of the momentum moments

The time evolution of a general momentum eigenstate �k
+�� can be derived by consecutively applying the trans-
formed Floquet operator �7�, the details of which are given in
Appendix A �See Eqs. �A15� and �A19��. We deduce that

�
�t = nT�� = F̃n���F̃n−1��� ¯ F̃1����k + ��

= �
j=−�

�

Jj−k���ei�j−k��e−i	nke−in2	�k+���e−in	�2��j + �� ,

�8�

where � and � are defined in Eqs. �A16� and �A17�, and2

 = �1 + 2��� . �9�

Defining the dimensionless momentum P̂� k̂+ �̂� p̂ /�K,
it follows straightforwardly from Eq. �8� that the mth-order
momentum moment of the evolved state is

	P̂m�n = �
j=−�

�

Jj−k
2 ��d���j + ��m, �10�

where ����� /�d= ��̃�, with

1The global phase is corrected slightly from that given previously
�46�.

2The parameter  is related to � �56,57� by �=	 /2.
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�̃ = �
j=0

n−1

ei	�j−�j2�. �11�

We note that Eq. �11� has the form of a Gauss sum, and that
Gauss sums have applications in number theory and various
areas of theoretical physics �64–67�.

By extension, the evolution of the moments for an initial
statistical mixture of momentum eigenstates, with distribu-
tion Dk���, is described by �56,57�

	P̂m�n = 

−1/2

1/2

d� �
j,k=−�

�

Jj−k
2 ��d���j + ��mDk��� . �12�

C. Existence of resonances and antiresonances

1. Manifestation of resonances in �

Quantum resonances are characterized by unbounded
growth in the system energy, and we see that this is due to
the constructive inteference of oscillatory terms in Eq. �11�.
They occur in the �-kicked rotor or particle when �d� in Eq.
�8� can be replaced by �dn �57�. To achieve such resonant
growth in �, the oscillatory terms contained within the sum
in Eq. �11� must add in phase. It follows that the summand of
�̃ must be periodic with respect to the counting index j. The
period Q �if present� is determined from

ei	��j+Q�−��j2+2jQ+Q2�� = ei	�j−�j2�, �13�

implying that

Q − 2j�Q − �Q2 = 2A �14�

must be satisfied, where A is an arbitrary integer.
The period Q should be independent of the counting index

j, and so �Q must be integer. Hence, � is rational, and if we
set �=r /s �r and s are integers with no common factors�, it
follows that the smallest possible value for Q is s. With this
information we deduce a simpler condition from Eq. �13�:

s� − r� = 2A . �15�

Elimination of  using Eq. �9� gives

� =
2A + s�r − ��

2�s
, �16�

indicating the quasimomentum values, subject to �
� �−1 /2,1 /2�, for which quantum resonances occur.

2. Manifestation of antiresonances in �

An antiresonance, in the strictest sense, is when the state
periodically cycles back to its initial condition �57�. This can
only occur when �d� is periodic in n, implying that
exp�i	�j−�j2�� should be oscillatory, i.e.,

ei	��j+Q�−��j2+2jQ+Q2�� = − ei	�j−�j2� = ei	�j−�j2+1�.

�17�

Proceeding along similar lines as for the resonant case �see
Sec. II C 1� this implies that Q=s, and that

s� − r� = 2A + 1, �18�

where A is an arbitrary integer. Condition �18� ensures that
�=0 when n is an even multiple of s.

For a given value of �=r /s, higher-order antiresonances
also exist for different values of � �57�. These are described
by the condition

ei	��j+Q�−�r/s��j2+2jQ+Q2�� = ei	Nr/Nsei	�j−�r/s�j2�

⇒ ei	��j+NsQ�−�r/s��j2+2jNsQ+Ns
2Q2��

= − ei	�j−�r/s�j2�. �19�

As above, it follows that Q=s; hence, the revival period of
the initial state is 2Nss. Condition �19� implies a generaliza-
tion of Eq. �18�, i.e.,

s� − r� = 2A +
Nr

Ns
. �20�

Antiresonances with revival periods 2Nss therefore occur for
quasimomentum values �subject to �� �−1 /2,1 /2��

� =
2A + Nr/Ns + s�r − ��

2�s
. �21�

How both resonances and antiresonances are manifest in
�, and their dependence on � and �, is illustrated in Fig. 1.
This demonstrates that the resonances are dense in the pa-

FIG. 1. �Color online� Parameter � as a function of � and � for
�=2 at �a� 15 kicks �b� 30 kicks, and �c� 60 kicks. An antiresonance
of order 2Ns, with �=r /s, will initially mimic exactly resonant
growth for Nss kicks. The diminishing finite size of the resonances
in �a�–�c� is due to nearby high-order antiresonances which become
apparent as n increases. Panel �d� shows the location of those reso-
nances �see Eq. �16�� for �=1 /s, where s=1,2 , . . . ,20. The reso-
nances become infinite in number as �→0, but for �=0 there are
only three resonances. Units are dimensionless.
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rameter space, but diminish in strength for increasing s. Fur-
thermore, resonances become more sharply defined for in-
creasing n as nearby high-order antiresonances become more
important.

III. TIME EVOLUTION OF THE MOMENTUM MOMENTS

A. General symmetric momentum distributions

1. Physical motivation

In the atom-optical kicked systems under consideration,
the atomic gas is initially held in a harmonic trapping poten-
tial. The ground state of the system is therefore spatially
symmetric, both in the presence and absence of significant
interatomic interactions. We consider the momentum mo-
ment dynamics for the case of symmetric initial momentum
distributions D�P�, such that D�P�=D�−P�. In particular, we
provide a detailed analytic investigation of the second- and
fourth-order momentum moments. These moments are most
relevant as signatures of dynamics in the atom optical
�-kicked particle �57� and accelerator �56�. The second-order
momentum moment �m=2 in Eq. �12�� is proportional to the
mean kinetic energy, and the fourth-order moment contains
information about the degree to which the distribution is
peaked.

2. Consequences of symmetry

We consider the initial state to be an incoherent ensemble
of momentum eigenstates, i.e., the momentum representation
of the density operator is diagonal. For a symmetric initial
momentum distribution, the initial population of state �−k
−�� is always equal to the initial population of state �k+��.
Using Eq. �10�, and explicitly stating the � dependence of
����, for an initial state �−k−�� the momentum moments
evolve as

	P̂m�n = �− 1�m �
j=−�

�

Jj−k
2
„�d��− ��…�j + ��m, �22�

where we have relabeled the summation �setting j to −j� and
used that J−j�x�= �−1� jJj�x� �68�.

Comparing Eqs. �22� and �10�, we see that when

��−��=����, it follows that 	P̂2m+1�n for an initial state

�−k−�� is equal to −	P̂2m+1�n for an initial state �k+��. The
momentum moment for a statistical mixture is the normal-
ized sum of the moments of the individual component states.
Consequently, for initially symmetric momentum distribu-
tions, the odd moments are identically zero whenever ���� is
in general equal to ��−��, i.e., for all values of the quasimo-
mentum �.

3. Invariance of �

The invariance of ���� upon changing � to −� is a useful
property which is often satisfied. In particular, for rational
�=r /s it is valid at resonance �see Eq. �15�� when n is a
multiple of s, and at antiresonance when s is an even mul-
tiple of s. Here we derive these results.

To begin we write Eq. �11�, changing the summation in-
dex j to n− j, i.e.,

�̃n+1��� = �
j=0

n

ei	��1+2����n−j�−�r/s��n2−2nj+j2��

= ei	�1+2���n−�r/s�n2�
j=0

n

ei	�−�1+2���j+2�r/s�nj−�r/s�j2�,

�23�

where now we use Eq. �23� to describe the �n+1�th kick.
Noting that ei	�j =e−i	�j and taking n to be a multiple of s
�i.e., n=�s�, we obtain

�̃�s+1��� = ei	�1+2���s�−rs�2�
j=0

�s

ei	��1−2���j−�r/s�j2�. �24�

Hence, as ��s+1������̃�s+1����, it follows that ��s+1���
=��s+1�−�� in general, whenever �=r /s. If the initial mo-
mentum distribution is symmetric, all odd moments will be
zero at these times; for integer �, this means the odd mo-
ments will always be zero.

If n=�s−1, we deduce from Eqs. �23� and �24� that

�̃�s��� = �
j=0

�s

ei	��1+2���j−�r/s�j2� − ei	�1+2���s�−rs�2

= ei	�1+2���s�−rs�2��
j=0

�s

ei	��1−2���j−�r/s�j2� − 1� .

�25�

Hence, it follows that ��s���=��s�−�� for the values of �
satisfying �1+2���s�−rs�2=2A �i.e., for � an even integer�.
This condition is satisfied whenever Eq. �15� or Eq. �18� �for
even �� holds, i.e., for values of � where resonances and
antiresonances are supported.

Finally, if the initial momentum distribution is symmetric,
all odd momentum moments will be zero when n is a mul-
tiple of s, for resonant evolution, and when n is an even
multiple of s, for antiresonant evolution. For this reason, we
consider only even momentum moments in the remainder of
this work.

4. Time evolution of the even momentum moments

The time evolution of the even momentum moments is
given by

	P̂2m�n = 

−1/2

1/2

d� �
j,k=−�

�

Jj
2��d���j + k + ��2mDk��� ,

�26�

where we have shifted the index j in Eq. �12� by k. Note that
�by Eq. �11�� ����=��k+��. Making the change of variables
P=k+� and binomially expanding �j+ P�2m implies
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	P̂2m�n = 

−�

�

dP D�P� �
j=−�

�

�
h=0

m �2m

2h
�Jj

2��d��j2hP2�m−h�,

�27�

where D�P�=Dk��� and we have eliminated odd powers of j,
because they sum over j to give zero �see Eq. �B5��. Using
the general form of the summation of Bessel functions over
even powers of j �see Eq. �B7��, we find that

	P̂2m�n = 	P̂2m�0 + 

−�

�

dP D�P��
h=1

m �2m

2h
�R2h��d��P2�m−h�,

�28�

where R2h is a 2hth-degree even polynomial in �d�.
Considering the two simplest even momentum moments

�see Eq. �B8��, Eq. �28� for m=1 becomes

	P̂2�n = 	P2�0 +
�d

2

2



−�

�

dP D�P��2, �29�

and for m=2 becomes

	P̂4�n = 	P4�0 + 

−�

�

dP D�P��3

8
�d

4�4 +
1

2
�d

2�2 + 3P2�d
2�2� .

�30�

B. Ultracold limit

1. Time evolution of the moments at zero temperature

We consider the most trivial example of a symmetric ini-
tial momentum distribution, i.e., we choose D�P�=��P� such
that all the atoms are initially in the P=0 state. This de-
scribes an ideal zero-temperature gas, which we refer to as
the ultracold limit. In this case �=0; hence =�, and the
resonance condition �15� becomes s�r−��=2A. Equation
�28� then simplifies to

	P̂2m�n = R2m��d�� , �31�

i.e., the growth of 	P̂2m�n scales to leading order as ��d��2m,
as shown for integer � in Fig. 2. In particular, we obtain

	P̂2�n =
�d

2

2
�2, 	P̂4�n =

3�d
4

8
�4 +

�d
2

2
�2, �32�

for m=1 and m=2, respectively.

2. Integer values of Ω

The case where �=r /s is an integer is equivalent to
choosing s=1. The amplitude of Eq. �11� is then given by
Eq. �A22� as

� =  sin�n�� − r�	/2�
sin��� − r�	/2�

 , �33�

which identifies � as the modulus of Chebyshev’s polyno-
mial of the second kind �69,70�, Un−1(cos���−r�	 /2�). Im-
posing the resonance condition s�r−��=2A with s=1 then

gives �=n. We therefore deduce from Eq. �32� that

	P̂2�n =
�d

2

2
n2, 	P̂4�n =

3�d
4

8
n4 +

�d
2

2
n2. �34�

Similarly, imposing the antiresonance condition �20� im-
plies �−r=2A+Nr /Ns. Hence, in the antiresonant case,

� = Un−1„�− 1�A cos�	Nr/2Ns�… , �35�

and the antiresonant evolutions of the second- and fourth-
order moments for integer � are given by

	P̂2�n = 	P2�0 +
�d

2

2
Un−1

2
„cos�	Nr/2Ns�… ,

	P̂4�n = 	P4�0 +
3�d

4

8
Un−1

4
„cos�	Nr/2Ns�…

+
�d

2

2
Un−1

2
„cos�	Nr/2Ns�… . �36�

As an example, we consider the simplest antiresonance
with Nr=Ns=1, so that Un−1= �−1�n sin�n	 /2�. From Eq.
�36� we find that

	P̂2�n = 	P2�0 +
�d

2

4
��− 1�n+1 + 1� ,

	P̂4�n = 	P4�0 + �3�d
4

16
+

�d
2

4
���− 1�n+1 + 1� , �37�

demonstrating that the second- and fourth-order momentum
moments oscillate with a period of two kicks.

�P̂
2m
�

n

m=1

m=2

m=3

m=4

m=5

m=6

m=7

1 2 4 6 8 10 20 40 60
100

105

1010

1015

1020

FIG. 2. �Color online� The first seven even momentum moments
of a �-kicked atomic cloud in the ultracold regime as given by Eq.
�31� for integer �, with the resonance condition �15� satisfied by
choosing any appropriate value of �. We choose �d=0.8	 as cor-
responding to an experimentally typical driving strength �46�. The
growth tends asymptotically to a power-law behavior with the
power given by the order of the moment. Units are dimensionless.
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3. Rational values of Ω

If �=r /s, then, for n�s, �̃ may be divided into identical
summations with a remainder term. Hence, assuming the
resonance condition �15� to be satisfied, setting n=�s+�
gives

�̃ = ��
j=0

s−1

ei	��j−�r/s�j2� + �
j=0

�−1

ei	��j−�r/s�j2�. �38�

It is possible to rewrite the first summation using the reci-
procity formula �71�

�
j=0

�C�−1

ei	��Aj2+Bj�/C� =�C

A
ei	���AC�−B2�/4AC� �

j=0

�A�−1

e−i	��Cj2+Bj�/A�,

�39�

where A, B, and C are integers such that AC−B is even. This
restriction is in fact exactly equivalent to the resonance con-
dition �15�. Consequently,

�̃ = ��s

r
ei	��2s/4r−rs� �

j=0

�r�−1

ei	��sj2+s�j�/r� + �
j=0

�−1

ei	��j−�r/s�j2�.

�40�

We can then impose �=0 because, for large values of � un-
der conditions of quantum resonance, the second summation
in Eq. �40� is only a small fluctuation in �̃. Taking the sim-
plest rational value of �=1 /s, Eq. �40� then simplifies con-
siderably to give

� = ��s . �41�

Substituting Eq. �41� into Eq. �32� and letting �=n /s yields

	P̂2�n =
�d

2

2s
n2, 	P̂4�n =

3�d
4

8s2 n4 +
�d

2

2s
n2, �42�

where it should be noted that these expressions are strictly
valid only when n is a multiple of s. Hence, in addition to the
conventional quantum resonances associated with the
�-kicked rotor/particle �57� �i.e., when �=0� there are nu-
merous fractional quantum resonances observable in the
�-kicked accelerator when � takes rational values. The
manifestation of such fractional quantum resonances in an
atom-optical context at finite temperature we address in de-
tail in another presentation �56�.

C. Finite-width momentum distributions

1. General form of �2q

From Sec. III B it is apparent that elucidation of the time
evolution of the momentum moments is dependent on
knowledge of the behavior of �. It is not feasible to evaluate
� for all cases. However, it is possible to consider its general
behavior within certain approximations.

From the definition of � �see Eq. �11��, it follows that

�2q = �
j=0

n−1

ei	�j−�j2�2q

= �
jq,jq�=0

n−1

ei	�F�jq�+�G�jq�−F�jq��−�G�jq���,

�43�

where

F�jq� = �
r=1

q

��jr − �jr
2� , �44a�

G�jq� = 2��
r=1

q

jr. �44b�

For brevity, we have used the convenient shorthand �jq,jq�
to

denote the 2q sums, with jq= �j1 , . . . , jq� and jq�= �j1� , . . . , jq��.
Substituting Eq. �43� into Eq. �28� then yields

	P̂2m� = 	P̂0
2m� + �

h=1

m �2m

2h
��

q=1

h

aq�d
2q �

jq,jq�=0

n−1

ei	�F�jq�−F�jq���

� 

−�

�

dP D�P�P2�m−h�ei	P�G�jq�−G�jq���, �45�

where we have expanded R2h��d��=�q=1
h aq��d��2q, and re-

placed � by k+�� P.

2. Large-finite-width limit

The integrands in Eq. �45� are in general oscillatory and,
by the method of stationary phase, under many circum-
stances give a negligible contribution to the momentum mo-
ment evolution. We first separate out the integrals with
nonoscillatory integrands. In particular, if G�jq�=G�jq��, then
F�jq�−F�jq��=2���jq , jq��, where ��jq , jq�� is an integer given
by3

��jq,jq�� = �
x=1

q

�
y=x+1

q

�jx�jy� − jxjy� . �46�

Hence, partitioning Eq. �45�, and using Eq. �46� yields

	P̂2m�n = 	P̂2m�0 + �
h=1

m �2m

2h
�	P2�m−h��0

� �
q=1

h

aq�d
2q �

jq,jq�

G�jq�=G�jq��

ei2	���jq,jq��

+ �
h=1

m �2m

2h
��

q=1

h

aq�d
2q �

jq,jq�

G�jq��G�jq��

ei	�F�jq�−F�jq���

� 

−�

�

dP D�P�P2�m−h�ei	P�G�jq�−G�jq���. �47�

3A simple example is for q=2 where we have the constraint j1

+ j2= j1�+ j2�. Considering �j1+ j2�2= �j1�+ j2��
2 leads to the conclusion

that j1
2+ j2

2− j1�
2− j2�

2=2�j1�j2�− j1j2�.
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In Eq. �47�, the number of terms in the first summation
over jq and jq� is equal to the number of different ways
G�jq�=G�jq�� can be satisfied. This is given by a degree-�2q
−1� polynomial in n, i.e.,

S2q−1�n� = �
r=1

2q−1

brn
r. �48�

The coefficients br can readily be computed for a given q, as
outlined in Appendix 8. Note also that, for integer values of
�, exp�i2	���jq , jq��� collapses to unity, independent of the
value of ��jq , jq��. Hence, for integer �,

�
jq,jq�

G�jq�=G�jq��

ei2	���jq,jq�� = S2q−1�n� , �49�

and substituting Eq. �49� into Eq. �47� yields

	P̂2m�n = 	P̂2m�0 + �
h=1

m �2m

2h
�	P2�m−h��0�

q=1

h

aq�d
2qS2q−1�n�

+ �
h=1

m �2m

2h
��

q=1

h

aq�d
2q �

jq,jq�

G�jq��G�jq��

ei	�F�jq�−F�jq���

� 

−�

�

dP D�P�P2�m−h�ei	P�G�jq�−G�jq���. �50�

It is illustrative to rewrite

ei	P�G�jq�−G�jq��� = ei2	P��r=1
q �jr−jr��, �51�

from which it is apparent that Eq. �51� has a maximum pe-
riod in P of 1 /�. We can therefore consider initial distribu-
tions D�P� with characteristic width �1 /� to be “broad,”
meaning that the oscillatory terms in the integrals of Eq. �50�
cause them to average essentially to zero. This leaves

	P̂2m�n � 	P̂2m�0 + �
h=1

m �2m

2h
�	P2�m−h��0�

q=1

h

aq�d
2qS2q−1�n� ,

�52�

where the leading order is n2m−1. Therefore, for sufficiently
broad distributions, we expect the 2mth-order moment to
scale with the number of kicks n as n2m−1 for integer values
of �.

For �=r /s, the ei2	���jq,jq�� terms take s different values.
If these values to some extent add in phase, then we expect
the growth of the 2mth-order moment to have the same
power law as for integer values of �, but with a constant
coefficient that may depend on �. As described in a compan-
ion paper �56�, through a combination of numerical and ana-
lytical investigation we have found that, for a broad Gauss-
ian initial momentum distribution, the growth of the second-
order moment appears to be largely independent of the value
of �. The growth of the fourth-order moment, however, is
generally cubic with n for rational �=r /s, but with a con-
stant coefficient that diminishes with increasing s.

D. Cumulants

The 2mth-order moment also includes information regard-
ing all lower-order moments, so observations of the moments
alone do not explicitly isolate effects of different order. How-

ever, the moments 	Pm̂� may be used to construct cumulants

		P̂m�� �54,72–75�, which are independent quantities. The
first-, second-, third-, and fourth-order cumulants are the
mean, variance, skew, and kurtosis, respectively, and are
given in terms of the moments by

		P̂�� = 	P̂� , �53a�

		P̂2�� = 	P̂2� − 	P̂�2, �53b�

		P̂3�� = 	P̂3� − 3	P̂�	P̂2� + 2	P̂�3, �53c�

		P̂4�� = 	P̂�4 − 3	P̂2�2 + 12	P̂�2	P̂2� − 6	P̂�4. �53d�

The skew quantifies the asymmetry of the distribution
about the mean, and the kurtosis quantifies the degree to
which the distribution is peaked. For example, a Gaussian �or
� function, which can be defined as a zero-variance limit of a
Gaussian� has kurtosis =0, whereas a distribution which is
more sharply peaked or cusplike has positive kurtosis, and a
distribution which is more “blunt” has negative kurtosis.

As discussed in Sec. III A, we are largely considering
symmetric distributions, where all odd moments, and there-
fore cumulants, are zero. In this instance, the two lowest-
order nonzero cumulants are given by

		P̂2�� = 	P̂2�, 		P̂4�� = 	P̂�4 − 3	P̂2�2. �54�

The evolutions of the second- and fourth-order moments in
the ultracold regime �D�P�=��P�� for �=r /s are described
by Eq. �42�. From this the lowest even cumulants, as defined
in Eq. �54�, readily follow:

		P̂2��n =
�d

2

2s
n2, 		P̂4��n =

�d
2

2s
n2 −

3�d
4

8s2 n4. �55�

Hence, the leading-order power-law behavior manifest in the
lowest two even moments is also observed in the lowest two
even cumulants. We have investigated numerically the be-
havior of all even cumulants up to m=100, which also ex-
hibit the same leading mth-order power-law behaviour as the
mth moments. The scaling laws therefore do not appear to be
simply manifestations of lower-order effects.

Although the cumulant definitions of Eq. �53� are for-
mally convenient, determining the moments from an experi-
mentally measured momentum distribution and then combin-
ing them into cumulants will cause experimental errors to
accumulate. Alternative, more direct assessment of the
“width” and “pointedness” of the measured distribution, pro-
viding it yields essentially the same information on the sys-
tem dynamics, may turn out to be experimentally more con-
venient.

POWER-LAW BEHAVIOR IN THE QUANTUM-RESONANT… PHYSICAL REVIEW A 78, 063401 �2008�

063401-7



IV. FINITE-TEMPERATURE IDEAL GAS

A. Overview

In Sec. III C 2 we determined that for an initial momen-
tum distribution that is symmetric and in some sense suffi-
ciently broad, the 2mth-order momentum moments are ex-
pected to grow as n2m−1, where n is the kick number. That is,
the power-law growth is in general reduced by one compared
to the ultracold limit �Sec. III B�. We can illustrate this with
analytical expressions for the second- and fourth-order mo-
ments and cumulants when the initial momentum distribution
is that of an ideal gas in thermal equilibrium, i.e.,

D�P� =
1

�2	w2
exp�− P2/2w2� . �56�

Here w is the standard deviation and the corresponding Bolt-
zmann temperature is given by Tw=�2K2w2 /MkB, where kB
is Boltzmann’s constant.

Here we choose to constrain � to take integer values r,
that is we do not consider the fractional quantum resonances
derived for �=1 /s in the ultracold limit in Sec. III B 3. We
note, however, that when considering the manifestation of

fractional quantum resonant dynamics in a finite-temperature
ideal gas, the behaviour of the fourth moment distinguishes
clearly between different kinds of fractional quantum reso-
nances, whereas the behavior of the second moment does not
�56�. This provides an additional, specific motivation for bet-
ter understanding the dynamics of the fourth-order momen-
tum moment.

When comparing with experiment, we note that our ana-
lytical results implicitly assume that the momentum distribu-
tion can be determined with perfect precision. Obviously this
cannot be exactly fulfilled experimentally �although Gustavs-
son et al. �76� report measuring the momentum distribution
of cold caesium atoms with a resolution equivalent to
0.05�K�.4 Our numerical investigations indicate that, at least
for the second- and fourth-order moments, the qualitative
behaviour of the moments is not very sensitive to coarsening
of the momentum resolution. Also note that, as quantum
resonant dynamics are associated with the momentum of a
portion of the atomic cloud increasing ballistically, as time
progresses a proportion of the atoms will no longer be in the
Raman-Nath regime. Experimentally, we therefore expect the
predicted power-law behavior to be followed for a finite time
only, as dictated by details of the experimental configuration.

B. Calculation of the moments

The general procedure is outlined in Appendix D; starting
with Eqs. �29� and �30�, we evaluate �, expand the resulting
expression in terms of cosines, and then integrate. Using
Eqs. �29� and �30� to determine Eqs. �D5� and �D9�, we find
that

	P̂2�n = w2 +
�d

2

2
n + �d

2�
q=1

n−1

�− 1�q��−r��n − q�e−2q2�2	2w2

�57�

and

4Note that �K is equal to two photon recoils.

�P̂
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(a)

n

�P̂
4 �
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FIG. 3. �Color online� Second-order �a� and fourth-order �b�
momentum moments yielded by the quantum-resonant evolution of
an atomic cloud, as propagated by Eq. �7�. We set �=0 �i.e., no net
acceleration�, T=TT ��=2�, and choose �d=0.8	 �46�. The initial
momentum distributions are Gaussian �see Eq. �56�� with standard
deviations w given by �*� w=1 /8, ��� w=1 /32, ��� w=1 /128,
and ��� w=1 /512. The solid lines correspond to analytic results
given by Eqs. �57� and �58�, and the symbols correspond to data
from a Monte Carlo simulation, the details of which are discussed
elsewhere �57�. The dash-dotted lines indicate the ultracold limit
�see Eq. �55� with s=1�, and the dashed lines are a lower bound
limit for a broad distribution �see Eq. �59� with w=0�. The vertical
dotted lines in �a� indicate nG=1 /�	w for w=1 /8,1 /32,1 /128,

i.e., the discrete time characterizing when growth in 	P̂2� deviates
from quadratic to linear. Units are dimensionless.
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FIG. 4. �Color online� Cube roots of the fourth-order momen-
tum cumulants of a resonantly kicked atomic cloud evolved accord-
ing to Eq. �7�. Parameters are �=0, T=TT ��=2�, and we choose
�d=0.8	 �46�. We consider Gaussian initial momentum distribu-
tions with standard deviation �*� w=1 /8, ��� w=1 /32,
��� w=1 /128, and ��� w=1 /512. After a certain number of kicks,
the growth becomes linear, i.e., the fourth-order cumulant grows
cubically. The inset shows the ideal �assuming perfect � kicks�
long-time behavior. Units are dimensionless.
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	P̂4� = 3w4 +
�d

4

8
�2n2 + 1�n +

�d
2

2
n + 3w2�d

2n +
3�d

4

8 �
q=1

n−1

�− 1�q��−r�e−2q2�2	2w2�q3 − 2nq2 − q +
2n

3
�2n2 + 1��

−
3�d

4

8 �
q=n

2n−2

�− 1�q��−r�e−2q2�2	2w2�q3

3
− 2nq2 +

�12n2 − 1�
3

q +
2n

3
�1 − 4n2��

+ �d
2�

q=1

n−1

�− 1�q��−r��n − q�e−2q2�2	2w2
+ 6�d

2�
q=1

n−1

�− 1�q��−r��n − q�w2�1 − 4w2q2�2	2�e−2q2�2	2w2
. �58�

The time scale over which the resonant growth of the
second-order moment �where �−� is even� switches from
the ultracold regime to the large finite-temperature regime
can be deduced from Eq. �57�. A substantially diminished
growth of the second-order moment occurs when q2�2	2w2

�1, so we take nG=1 /�	w to be the transition time. Assum-
ing that w is sufficiently large that nG�1, the exponential
terms in Eqs. �57� and �58� become vanishingly small, and
we find that

	P̂2�n = w2 +
�d

2

2
n , �59a�

	P̂4�n = 3w4 +
�d

4

8
�2n2 + 1�n + 3w2�d

2n . �59b�

The transition time characterizing the transition from quartic
to cubic growth of the fourth-order moment is not straight-
forward to define. However, from Eq. �58� and Fig. 3, it is
clear that this occurs over the same time scale as for the
second-order moment. In previous work we considered a
symmetric initial momentum distribution that is uniform
over a finite range �less than 1 /�� �57�; the same qualitative
behavior is then manifest as in Fig. 3, with comparable time
scales.

C. Momentum cumulants and the thermal limit

As discussed in Sec. III D, the momentum moments are in
general not independent quantities and include lower-order
correlations. It is therefore instructive to consider the second-
and fourth-order cumulants derived from a Gaussian initial
momentum distribution �Eq. �56��. From Eqs. �54� and �59�
it follows that 		P̂2��n= 	P̂2�n and

		P̂4��n =
�d

4

8
�2n2 − 6n + 1�n . �60�

Hence, as in the ultracold limit �Eq. �55��, the power laws
derived for the momentum moments in the thermal regime
also appear to hold for the cumulants; the long-term cubic

power-law growth of 		P̂4��n is illustrated in Fig. 4. As in the
ultracold limit �Sec. III D�, the scaling laws are therefore not
simply manifestations of lower-order effects. Although we
have only shown this for the second- and fourth-order cumu-
lants, we expect it to be generally true.

Note also that both the moments and the change in the

fourth-order moment �i.e., 	P̂4�n− 	P̂4�0� formally diverge for
large w, whereas this is not the case for the changes in the
cumulants from their initial values. It is therefore in the cu-
mulants, rather than the moments, that one can speak of a
well-defined thermal limit �56�.

V. CONCLUSIONS

We have studied the quantum-resonant dynamics of the
atom-optical quantum �-kicked accelerator, a fundamental
system in the study of quantum chaos which reduces to the
�-kicked particle �the atom-optical realization of the quan-
tum �-kicked rotor� when the �tunable� effective acceleration
parameter a=0. In the �-kicked particle, quantum resonant
and antiresonant dynamics result when the periodicity of re-
peated off-resonant laser pulses is a half-integer multiple of
the the Talbot time TT=4	M /�K2. We have found that, for
such pulse periodicities, fractional quantum resonances occur
when the rescaled effective acceleration parameter
�=aKT2 /2	 takes noninteger rational values.

We have focused on the dynamics of the momentum mo-
ments of the atomic centre-of-mass momentum distribution.
The moment evolutions are useful for characterizing the dif-
ferent kinds of dynamic behavior in the atom-optical
�-kicked accelerator. We have found explicitly that, in the
ultracold limit, quantum resonant dynamics cause all even-
ordered momentum moments to exhibit a power-law growth,
with an exponent equal to the order of the moment. For
fractional quantum resonances the moment growth follows
the same power laws, but with coefficients that reduce with
increasing size of the denominator of �. We have argued
that, for a sufficiently broad initial atomic center-of-mass
momentum distribution undergoing quantum resonant, or
fractional quantum resonant evolution, the exponent of the
power law growth of the even-ordered moments will gener-
ally be reduced by 1. In every case considered, we have
found that the long-term momentum cumulant dynamics also
display power-law growth with the same exponent, meaning
the scaling laws in the growth of the moments are not simply
manifestations of lower-order effects.

We have illustrated a reduction in the power-law exponent
by calculating explicit expressions for the dynamics of the
second- and fourth-order momentum moments for a finite
temperature ideal gas initially at thermal equilibrium, i.e.,
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using a Maxwell-Boltzmann distribution to describe the ini-
tial state. These are the two simplest moments to calculate,
and are physically motivated in that they provide directly
useful information on the dynamical behavior of the atomic
cloud: the second-order moment provides a signature to dis-
tinguish between dynamical localization and quantum-
resonant dynamics in the atom-optical �-kicked particle �57�
and accelerator, and the fourth-order momentum moment
distinguishes between different classes of fractional resonant
dynamics in the quantum �-kicked accelerator �56�.
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APPENDIX A: MOMENTUM-STATE TIME EVOLUTION

1. Overview

In this appendix we determine the time evolution of the
eigenstate �k+�� by applying the Floquet operator �7� con-
secutively for n kicks. Our derivation follows closely the
equivalent calculation for the �-kicked rotor �where �=0�
�57�.

2. Application of the transformed Floquet operators

The effect of applying the nth transformed Floquet opera-
tor �7� to the momentum eigenstate �k+�� is

F̃n����k + �� =
 dz F̃n����z�	z�k + �� = ei�	�1+���−K�n��

�
 dz e−ik̂K�nei�d cos�Kẑ��z�	z�k + �� , �A1�

where we have defined

K�n � 	��1 + 2��� − ��2n − 1�� . �A2�

Using exp�−ik̂K�n� �z�=exp�i�K�n� and 	z �k+��
=�K /2	exp�i�k+��Kz�, we deduce from Eq. �A1� that

F̂n����k + �� =� K

2	
ei	��1+���
 dz�z + �n�ei�k+��Kz

� ei�d cos�Kz�, �A3�

where we have used 	z �k+��=�K /2	ei�k+��Kz.
The combined effect of the nth and �n+1�th transformed

Floquet operators can be determined similarly, to obtain

F̃n+1���F̃n����k + �� =� K

2	
ei2	��1+���
 dz�z + �n + �n+1�

� ei�k+��Kzei�d�cos�Kz�+cos�Kz+K�n��.

�A4�

Hence, the full time evolution of the initial momentum

eigenstate, governed by F̃n���= F̃n���F̃n−1���¯ F̃1���, is

F̃n����k + �� =� K

2	
ein	��1+���
 dzz + �

n�=1

n

�n��
�ei�k+��Kzexp�i�d�cos�Kz�

+ �
j=1

n−1

cos�Kz + �
j�=1

j

K� j���� . �A5�

3. Spatial representation

To determine the matrix element 	z � F̃n��� �k+��, we
project Eq. �A5� onto �z�, i.e.,

	z�F̃n����k + �� =� K

2	
ein	��1+���ei�k+���Kz−�

n�=1
n

K�n��

� exp�i�d�cos�Kz − �
n�=1

n

K�n��
+ �

j=1

n−1

cos�Kz − �
n�=1

n

K�n� + �
j�=1

j

K� j���� .

�A6�

Using Eq. �A2�, we can readily evaluate the sum

�
n�=1

n

K�n� = n	��1 + 2��� − �n� , �A7�

and, with the definition

qj � �n − j�	��1 + 2��� − ��n + j�� , �A8�

Eq. �A6� simplifies to

	z�F̃n����k + �� =� K

2	
ein	��1+���ei�k+���Kz−q0�

� exp�i�d�
j=0

n−1

cos�Kz − qj�� . �A9�

Finally, defining ��� j=0
n−1 cos qj and ��� j=0

n−1 sin qj, Eq. �A9�
further simplifies to

	z�F̃n����k + �� =� K

2	
ein	��1+���ei�k+���Kz−q0�

� ei�d� cos�Kz�+i�d� sin�Kz�. �A10�

4. Probability amplitudes

a. General form of the probability amplitudes

Invoking Bessel function expansions �57�, Eq. �A10� can
be recast in the form
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	z�F̃n����k + �� =� K

2	
ein	��1+���ei�k+���Kz−q0�

� �
j=−�

�

eijKzJj���eij�, �A11�

where � and � are real and defined by �ei���d�i�+��. To
evaluate the matrix element

	j + ���F̃n����k + �� =� K

2	

 dz e−i�j+���Kz	z�F̃n����k + �� ,

�A12�

we substitute Eq. �A11� into Eq. �A12� to yield

	j + ���Fn����k + �� = e−i	nke−in2	�k+���e−in	�2� �
j�=−�

�

Jj����

� eij�� K

2	

 dz ei�k+j�−j+�−���Kz,

�A13�

where = �1+2���.
We now consider the general expansion

�
�t = nT�� � F̃n����k + �� = �
j=−�

�

ckj��,nT��j + �� ,

�A14�

where the probability amplitudes ckj�� ,nT� are given by

ckj�� ,nT����−���= 	j+���F̂n����k+��. Evaluating the Fou-
rier integral in Eq. �A13�, it follows that

ckj��,nT� = Jj−k���ei�j−k��e−i	nke−in2	�k+���e−in	�2�,

�A15�

where the normalizsation condition � j=�
� �ckj�� ,nT��2=1 is

satisfied. Equations �A14� and �A15� describe the time evo-
lution of the initial momentum eigenstate �k+��. However, it
still remains to evaluate � and �.

b. Evaluation of � and �

It is convenient to define5

�d� = �ei�, �A16�

i.e.,

� � i� + � = i�
j=0

n−1

e−iqj . �A17�

Substituting Eq. �A8� into Eq. �A17�, we obtain

� = ie−i	�n−�n2��
j=0

n−1

ei	�j−�j2�. �A18�

Absorbing the global phase, we define

�̃ = �
j=0

n−1

ei	�j−�j2�, �A19�

and hence the magnitude ����̃ � = �� � = �� � /�d. It is perhaps
natural to think of � in �ei� as being positive, although we
find it more convenient in Eq. �A22� to allow � to take
negative values.

c. Integer values of Ω

The Gauss sum in Eq. �A19� can be evaluated analytically
in some particular cases. Here we illustrate this for integer
�=r. For this choice of �, Eq. �A19� reduces to a geometric
sum,

�̃ = �
j=0

n−1

ei	�−r�j , �A20�

which can be evaluated to give

�̃ =
1 − ein�−r�	

1 − ei�−r�	 = ei�n−1��−r�	/2sin�n� − r�	/2�
sin�� − r�	/2�

.

�A21�

Referring to Eqs. �A17� and �A18�, we can now set

�

�d
=

sin�n� − r�	/2�
sin�� − r�	/2�

, �A22�

and �= �1− �−r��n+1��	 /2. Note that Eq. �A22� can take
negative values, and hence the absolute value must be taken
to obtain �, if desired.

APPENDIX B: SUMMATIONS OF BESSEL FUNCTIONS

We first state the recurrence relation �68�

Jn−1�x� + Jn+1�x� =
2n

x
Jn�x� , �B1�

and Neumann’s addition theorem �68�

�
n=−�

�

Jn�x1�Jn+k�x2� = Jk�x1 − x2� , �B2�

where n and k are integer. The addition theorem �B2� has two
special cases:

�
n=−�

�

Jn
2�x� = �

n=−�

�

Jn+k
2 �x� = 1 �B3�

for any integer value of k, and

�
n=−�

�

Jn�x�Jn+k�x� = 0 �B4�

for integer k�0.

5The parameter � in this paper is related to a previously defined
parameter � �57� according to �= i�*.
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The identity J−n�x�= �−1�nJn�x� implies Jn
2�x�=J−n

2 �x� �68�,
and therefore that

�
n=−�

�

n2m−1Jn
2�x� = 0 �B5�

for integer m�0. In contrast, repeated substitution of the
recurrence relation �B1� reveals

�
n=−�

�

n2mJn
2�x� = �

q=1

2m � x

2
�q

�
p=0

q

cq,p �
n=−�

�

Jn−q+2p�x�Jn�x� ,

�B6�

where it is in principle possible, although often tedious, to
determine the coefficients cq,p. With Eqs. �B3� and �B4� we
can eliminate all terms in Eq. �B6� except those where q
=2p. Hence,

�
n=−�

�

n2mJn
2�x� = �

q=1

m

aqx2q � R2m�x� , �B7�

where aq�c2q,q /22q, and we note that the leading-order co-
efficient of the polynomial R2m�x� is always am= � 2m

m � /22m. In
particular,

�
n=−�

�

n2Jn
2�x� =

x2

2
, �

n=−�

�

n4Jn
2�x� =

3x4

8
+

x2

2
. �B8�

APPENDIX C: COUNTING TERMS WHERE
G(jq)=G(jq�)

To find the number of terms where G�jq�=G�jq��, we re-
quire that �see Eq. �44b��

�j1 + j2 + ¯ + jq − j1� − j2� − ¯ − jq�� = 0, �C1�

where jq, jq�� �0,n−1�. We follow a well-known number
theoretical approach, which is described in detail in �66�. The
number of ways that Eq. �C1� can be satisfied is isomorphic
to the problem of evaluating the x-independent term in

�1 + x + x2 + ¯ + xn−1�q�1 + x−1 + x−2 + ¯ + x−n+1�q,

�C2�

which we multiply by xq�n−1�, to give

�1 + x + x2 + ¯ + xn−1�2q. �C3�

We now require the coefficient of xq�n−1� in Eq. �C3�, which
is given by6 �77�

W�2q,n� = �
j=0

q

�− 1� j�2q

j
��n�q − j� + q − 1

2q − 1
�

= �
j=0

q

�− 1� j�N + q − 1

N − q
��2q

j
� , �C4�

where we have used � x
y �= � x

x−y � and set N=n�q− j�. The only
n-dependent part of W�2q ,n� is the binomial coefficient

�N + q − 1

N − q
� =

�N + m − 1��N + m − 2� ¯ �N − m + 1�
�2q − 1�!

,

�C5�

the numerator of which is a polynomial in N of degree 2q
−1. Thus, we may write W�2q ,n�=S2q−1�n� where S2q−1�n� is
a polynomial in n of degree 2q−1.

APPENDIX D: DERIVATION OF MOMENTS
FOR GAUSSIAN DISTRIBUTIONS

1. Second moment

For a Gaussian initial momentum distribution D�P�
=exp�−P2 /2w2� /�2	w2 �w is the standard deviation�, the

initial second-order momentum moment is 	P̂2�0=w2. Using
Eqs. �29� and �A22�, we deduce that, for integer �=r,

	P̂2�n = w2 +
�d

2

2�2	w2

−�

�

dP
sin2�n� − r�	/2�
sin2�� − r�	/2�

e−P2/2w2
.

�D1�

Note that we can replace the � in ��1+2��� with P�k
+� without altering Eq. �A22�. We now use Eq. �E3� to-
gether with

cos�q��1 + 2P�� − r�	� = �− 1�q��−r� cos�2q�	P� ,

�D2�

to determine from Eq. �D1� that

	P̂2�n = w2 +
�d

2

2
n +

�d
2

�2	w2 �
q=1

n−1

�− 1�q��−r��n − q�

� 

−�

�

dP cos�2q�	P�e−P2/2w2
. �D3�

We now substitute �78�

1
�2	w2


−�

�

dP cos�2q�	P�e−P2/2w2
= e−2q2�2	2w2

�D4�

into Eq. �D3�, which gives the final result:

	P̂2�n = w2 +
�d

2

2
n + �d

2�
q=1

n

�− 1�q��−r��n − q�e−2q2�2	2w2
.

�D5�

2. Fourth moment

The initial fourth-order moment for a Gaussian initial dis-

tribution is 	P̂4�0=3w4. Using a similar approach to that for
the second-order momentum moment, we use Eqs. �30� and
�A22� to deduce that, for �=r,

6This is equivalent to considering 2q n-sided dice and finding the
number of ways W�2q ,n� of totaling q�n−1�.
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	P̂4�n = 3w4 +
3�d

4

8�2	w2

−�

�

dP
sin4�n� − ��	/2�
sin4�� − ��	/2�

e−P2/2w2
+

�d
2

�2	w2

−�

�

dP�1

2
+ 3P2� sin2�n� − ��	/2�

sin2�� − ��	/2�
e−P2/2w2

. �D6�

Using Eqs. �D2�, �E3�, and �E4�, we deduce from Eq. �D6� that

	P̂4� = 3w4 +
�d

4

8
�2n2 + 1�n +

�d
2

2
n + 3	P0

2��d
2n +

3�d
4

8�2	w2 �
q=1

n−1

�− 1�q��−r��q3 − 2nq2 − q +
2n

3
�n2 + 1��

�

−�

�

dP cos�2q�	P�e−P2/2w2
−

3�d
4

8�2	w2 �
q=n

2n−2

�− 1�q��−r��q3

3
− 2nq2 +

�12n2 − 1�
3

q +
2n

3
�1 − 4n2��

�

−�

�

dP cos�2q�	P�e−P2/2w2
+

�d
2

�2	w2 �
q=1

n−1

�− 1�q��−r��n − q�

−�

�

dP cos�2q�	P�e−P2/2w2

+
6�d

2

�2	w2 �
q=1

n−1

�− 1�q��−r��n − q�

−�

�

dP P2 cos�2q�	P�e−P2/2w2
. �D7�

Finally, using 	P̂2�0=w2, Eq. �D4�, and the integral �78�

1
�2	w2


−�

�

dP P2 cos�2q�	P�e−P2/2w2
= w2�1 − 4q2�2	2w2�e−2q2�2	2w2

�D8�

to simplify Eq. �D7�, we find that

	P̂4� = 3w4 +
�d

4

8
�2n2 + 1�n + 3w2�d

2n +
3�d

4

8 �
q=1

n−1

�− 1�q��−r�e−2q2�2	2w2�q3 − 2nq2 − q +
2n

3
�2n2 + 1��

−
3�d

4

8 �
q=n

2n−2

�− 1�q��−r�e−2q2�2	2w2�q3

3
− 2nq2 +

�12n2 − 1�
3

q +
2n

3
�1 − 4n2�� + �d

2�
q=1

n−1

�− 1�q��−r��n − q�e−2q2�2	2w2
.

+ 6�d
2�

q=1

n−1

�− 1�q��−r��n − q�w2�1 − 4w2q2�2	2�e−2q2�2	2w2
. �D9�

APPENDIX E: COSINE EXPANSIONS

In order to perform many of the integrations in Appendix
D, we used finite cosine expansions of powers of
sin�n�� /sin���. To derive such an expansion for
sin2�n�� /sin2���, we first consider the summation

n + 2�
q=1

n−1

�n − q�cos�2q�� = n + n�
q=1

n−1

ei2q� + n�
q=1

n−1

e−i2q�

− �
q=1

n−1

qei2q� − �
q=1

n−1

qe−i2q�.

�E1�

The exponential sums in Eq. �E1� are geometric sums, or
their derivatives, which can be evaluated to give

n + 2�
q=1

n−1

�n − q�cos�2q�� = n + n
ei2�n − e2i�

e2i� − 1
− n

e−i2��n−1� − 1

e2i� − 1

+
i

2

�

��

ei2�n − e2i�

e2i� − 1

−
i

2

�

��

e−i2�n − e−2i�

e−2i� − 1
. �E2�

Differentiating Eq. �E2� and identifying a mutual denomina-
tor then gives the desired result:

n + 2�
q=1

n−1

�n − q�cos�2q�� =
e2i��n+1� − 2e2i� + e−2i��n−1�

�e2i� − 1�2

=
sin2�n��
sin2���

. �E3�
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Similarly, rewriting cos�2q�� and converting terms in-
volving powers of q to derivatives of cos�2q��, we find that

sin4�n��
sin4���

=
n

3
�2n2 + 1� + �

q=1

n−1 �q3 − 2nq2 − q

+
2n

3
�2n2 + 1��cos�2q��

− �
q=n

2n−2 �q3

3
− 2nq2 + �4n2 −

1

3
�q

+
2n

3
�1 − 4n2��cos�2q�� . �E4�

We note that Un−1(cos���)=sin�n�� /sin��� is a Cheby-
shev polynomial of the second kind, and in this appendix we
have considered finite expansions of these in terms of
Chebyshev polynomials of the first kind, i.e., Tn(cos���)
=cos�n��. These are equivalent to discrete Fourier trans-
forms.
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