55 research outputs found
A Parallel G Quadruplex-Binding Protein Regulates the Boundaries of DNA Elimination Events of \u3ci\u3eTetrahymena thermophila\u3c/i\u3e
Guanine (G)-rich DNA readily forms four-stranded quadruplexes in vitro, but evidence for their participation in genome regulation is limited. We have identified a quadruplex-binding protein, Lia3, that controls the boundaries of germline-limited, internal eliminated sequences (IESs) of Tetrahymena thermophila. Differentiation of this ciliate’s somatic genome requires excision of thousands of IESs, targeted for removal by small-RNA-directed heterochromatin formation. In cells lacking LIA3 (ΔLIA3), the excision of IESs bounded by specific G-rich polypurine tracts was impaired and imprecise, whereas the removal of IESs without such controlling sequences was unaffected. We found that oligonucleotides containing these polypurine tracts formed parallel G-quadruplex structures that are specifically bound by Lia3. The discovery that Lia3 binds G-quadruplex DNA and controls the accuracy of DNA elimination at loci with specific G-tracts uncovers an unrecognized potential of quadruplex structures to regulate chromosome organization. Author Summary
Non-canonical DNA structures, including four-stranded Guanine quadruplexes (G4 DNA), have been observed readily in vitro, but their regulatory importance within cells has been particularly challenging to demonstrate conclusively. We have discovered a G4 DNA binding protein, Lia3, that specifically regulates programmed DNA elimination events in Tetrahymena thermophila. This ciliate deletes nearly one-third of its germline genome from each developing somatic nucleus. These genomic deletion events must be accurate as the thousands of DNA regions excised are located near genes and/or their promoters, thus aberrant excision may alter gene expression. When we knocked out the gene encoding Lia3, we found that the boundaries of the excised regions were heterogeneous for a subset of loci that are flanked by G-rich (5’-AAAAAGGGGG-3’) boundary controlling sequences. When we tested whether Lia3 bound this sequence, we discovered that the sequence itself formed G4 DNA and that Lia3 bound only when the sequence adopted this conformation. Our findings that Lia3 binds G4 DNA and that deletion of the gene encoding Lia3 perturbs the boundaries of the excised loci which are flanked by this quadruplex-forming DNA provides compelling evidence that this non-canonical DNA structure has a critical role during development of these cells
Sumoylation is developmentally regulated and required for cell pairing during conjugation in Tetrahymena thermophila
The covalent attachment of small ubiquitin-like modifier (SUMO) to target proteins regulates numerous nuclear events in eukaryotes, including transcription, mitosis and meiosis, and DNA repair. Despite extensive interest in nuclear pathways within the field of ciliate molecular biology, there have been no investigations of the SUMO pathway in Tetrahymena. The developmental program of sexual reproduction of this organism includes cell pairing, micronuclear meiosis, and the formation of a new somatic macronucleus. We identified the Tetrahymena thermophila SMT3 (SUMO) and UBA2 (SUMO-activating enzyme) genes and demonstrated that the corresponding green fluorescent protein (GFP) tagged gene products are found predominantly in the somatic macronucleus during vegetative growth. Use of an anti-Smt3p antibody to perform immunoblot assays with whole-cell lysates during conjugation revealed a large increase in SUMOylation that peaked during formation of the new macronucleus. Immunofluorescence using the same antibody showed that the increase was localized primarily within the new macronucleus. To initiate functional analysis of the SUMO pathway, we created germ line knockout cell lines for both the SMT3 and UBA2 genes and found both are essential for cell viability. Conditional Smt3p and Uba2p cell lines were constructed by incorporation of the cadmium-inducible metallothionein promoter. Withdrawal of cadmium resulted in reduced cell growth and increased sensitivity to DNA-damaging agents. Interestingly, Smt3p and Uba2p conditional cell lines were unable to pair during sexual reproduction in the absence of cadmium, consistent with a function early in conjugation. Our studies are consistent with multiple roles for SUMOylation in Tetrahymena, including a dynamic regulation associated with the sexual life cycle
Rapid generation of hypomorphic mutations
Hypomorphic mutations are a valuable tool for both genetic analysis of gene function and for synthetic biology applications. However, current methods to generate hypomorphic mutations are limited to a specific organism, change gene expression unpredictably, or depend on changes in spatial-temporal expression of the targeted gene. Here we present a simple and predictable method to generate hypomorphic mutations in model organisms by targeting translation elongation. Adding consecutive adenosine nucleotides, so-called polyA tracks, to the gene coding sequence of interest will decrease translation elongation efficiency, and in all tested cell cultures and model organisms, this decreases mRNA stability and protein expression. We show that protein expression is adjustable independent of promoter strength and can be further modulated by changing sequence features of the polyA tracks. These characteristics make this method highly predictable and tractable for generation of programmable allelic series with a range of expression levels
Plasmodium falciparum translational machinery condones polyadenosine repeats
Plasmodium falciparum is a causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophila, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway
Genome-Scale Analysis of Programmed DNA Elimination Sites in Tetrahymena thermophila
Genetically programmed DNA rearrangements can regulate mRNA expression at an individual locus or, for some organisms, on a genome-wide scale. Ciliates rely on a remarkable process of whole-genome remodeling by DNA elimination to differentiate an expressed macronucleus (MAC) from a copy of the germline micronucleus (MIC) in each cycle of sexual reproduction. Here we describe results from the first high-throughput sequencing effort to investigate ciliate genome restructuring, comparing Sanger long-read sequences from a Tetrahymena thermophila MIC genome library to the MAC genome assembly. With almost 25% coverage of the unique-sequence MAC genome by MIC genome sequence reads, we created a resource for positional analysis of MIC-specific DNA removal that pinpoints MAC genome sites of DNA elimination at nucleotide resolution. The widespread distribution of internal eliminated sequences (IES) in promoter regions and introns suggests that MAC genome restructuring is essential not only for what it removes (for example, active transposons) but also for what it creates (for example, splicing-competent introns). Consistent with the heterogeneous boundaries and epigenetically modulated efficiency of individual IES deletions studied to date, we find that IES sites are dramatically under-represented in the ∼25% of the MAC genome encoding exons. As an exception to this general rule, we discovered a previously unknown class of small (<500 bp) IES with precise elimination boundaries that can contribute the 3′ exon of an mRNA expressed during genome restructuring, providing a new mechanism for expanding mRNA complexity in a developmentally regulated manner
Mesoscopic conductance and its fluctuations at non-zero Hall angle
We consider the bilocal conductivity tensor, the two-probe conductance and
its fluctuations for a disordered phase-coherent two-dimensional system of
non-interacting electrons in the presence of a magnetic field, including
correctly the edge effects. Analytical results are obtained by perturbation
theory in the limit . For mesoscopic systems the conduction
process is dominated by diffusion but we show that, due to the lack of
time-reversal symmetry, the boundary condition for diffusion is altered at the
reflecting edges. Instead of the usual condition, that the derivative along the
direction normal to the wall of the diffusing variable vanishes, the derivative
at the Hall angle to the normal vanishes. We demonstrate the origin of this
boundary condition from different starting points, using (i) a simplified
Chalker-Coddington network model, (ii) the standard diagrammatic perturbation
expansion, and (iii) the nonlinear sigma-model with the topological term, thus
establishing connections between the different approaches. Further boundary
effects are found in quantum interference phenomena. We evaluate the mean
bilocal conductivity tensor , and the mean and variance
of the conductance, to leading order in and to order
, and find that the variance of the conductance
increases with the Hall ratio. Thus the conductance fluctuations are no longer
simply described by the unitary universality class of the case,
but instead there is a one-parameter family of probability distributions. In
the quasi-one-dimensional limit, the usual universal result for the conductance
fluctuations of the unitary ensemble is recovered, in contrast to results of
previous authors. Also, a long discussion of current conservation.Comment: Latex, uses RevTex, 58 pages, 5 figures available on request at
[email protected]. Submitted to Phys. Rev.
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
Transposons that clean up after themselves
A transposon in the germline genome of the ciliate Oxytricha uses its transposase to remove itself, as well as other germline-limited DNA, from the differentiating somatic genome during development
- …