19 research outputs found

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    Get PDF
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium-and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a 'very high risk' of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate 'rapid' management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement. Decision support tools AS-ISK Hazard identification Non-native species Risk analysis Climate changepublishedVersio

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    Get PDF
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium- and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a ‘very high risk’ of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate ‘rapid’ management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement.publishedVersio

    Non-indigenous species refined national baseline inventories : A synthesis in the context of the European Union's Marine Strategy Framework Directive

    Get PDF
    Refined baseline inventories of non-indigenous species (NIS) are set per European Union Member State (MS), in the context of the Marine Strategy Framework Directive (MSFD). The inventories are based on the initial assessment of the MSFD (2012) and the updated data of the European Alien Species Information Network, in collaboration with NIS experts appointed by the MSs. The analysis revealed that a large number of NIS was not reported from the initial assessments. Moreover, several NIS initially listed are currently considered as native in Europe or were proven to be historical misreportings. The refined baseline inventories constitute a milestone for the MSFD Descriptor 2 implementation, providing an improved basis for reporting new NIS introductions, facilitating the MSFD D2 assessment. In addition, the inventories can help MSs in the establishment of monitoring systems of targeted NIS, and foster cooperation on monitoring of NIS across or within shared marine subregions. Highlights • Refined MSFD baseline inventories of non-indigenous species (NIS) are set in EU. • The inventories are given per EU Member State (MS) and MSFD subregion up to 2012. • The NIS lists provide a basis for reporting new NIS introductions in EU after 2012. • Our work constitutes a milestone for the MSFD Descriptor 2 implementation

    Non-indigenous species refined national baseline inventories: A synthesis in the context of the European Union's Marine Strategy Framework Directive

    Get PDF
    Refined baseline inventories of non-indigenous species (NIS) are set per European Union Member State (MS), in the context of the Marine Strategy Framework Directive (MSFD). The inventories are based on the initial assessment of the MSFD (2012) and the updated data of the European Alien Species Information Network, in collaboration with NIS experts appointed by the MSs. The analysis revealed that a large number of NIS was not reported from the initial assessments. Moreover, several NIS initially listed are currently considered as native in Europe or were proven to be historical misreportings. The refined baseline inventories constitute a milestone for the MSFD Descriptor 2 implementation, providing an improved basis for reporting new NIS introductions, facilitating the MSFD D2 assessment. In addition, the inventories can help MSs in the establishment of monitoring systems of targeted NIS, and foster cooperation on monitoring of NIS across or within shared marine subregions.Henn Ojaveer and Maiju Lehtiniemi wish to acknowledge the project COMPLETE (Completing management options in the Baltic Sea region to reduce risk of invasive species introduction by shipping), co-financed by the European Union's funding Programme Interreg Baltic Sea Region (European Regional Development Fund). João Canning-Clode was supported by a starting grant in the framework of the 2014 FCT Investigator Programme (IF/01606/2014/CP1230/CT0001) and wish to acknowledge the support of Fundação para a Ciência e Tecnologia (FCT), through the strategic project UID/MAR/04292/2019 granted to MARE

    Spatial Variability of Physicochemical Parameters and Phytoplankton at the Tagus Estuary (Portugal)

    No full text
    The estuarine phytoplankton communities are known to respond rapidly to environmental changes, being considered an important water quality indicator; thus, it is crucial to fully understand its natural variability. The objective of the present study was to assess the spatial variability of both physicochemical variables and the phytoplankton community, to understand how such variability is influenced by seasonality and to evaluate how the anthropogenic sources affect such patterns. The Tagus estuary was used as a case study, since it is one of Europe’s largest estuaries, with high spatial and seasonal variations and a high level of human pressure associated with large urban and industrial areas. To achieve this goal, environmental parameters, nutrients concentration, bivalve biomass (filter feeders) and phytoplankton pigments were quantified in a single summer sampling campaign with high spatial resolution and in monthly campaigns in eight sampling stations through the Tagus estuary, in one year. In general, suspended particulate matter and nutrients decreased from the upper part of the estuary to the estuary mouth; however, relevant local inputs were also observed in more downstream locations, near outfalls of wastewater treatment plants (WWTP). The chlorophyll-a concentrations were higher over the southern intertidal mudflats, probably due to resuspension of microphytobenthos, associated with higher nutrient concentrations. Through a grazing indicator, it was observed that grazers are important drivers of variability of the phytoplankton community composition. All water bodies achieved “good” and “high” water quality classifications for both physicochemical and biological indicators, with the worst results reported for the water bodies located at the upper estuary. Therefore, this estuary presents a decreasing trend of nutrients and chlorophyll-a in the upstream–downstream direction, except for the estuary channels and the outfall in the northern margin, which lead to an increase in nutrient concentrations. However, these increases did not affect the water quality of the three analyzed water bodies, presenting at least good ecological status, considering the nutrient and chlorophyll-a indicators

    What are jellyfish really eating to support high ecophysiological condition?

    No full text
    The feeding ecology of Blackfordia virginica was evaluated concurrently with their ecophysiological condition in a temperate estuary. The diet of B. virginica is composed not only of metazooplankton, as commonly observed for other jellyfish species, but also of phytoplankton, ciliates and detritus. This feeding behavior might explain their good nutritional condition and sustainable growth during bloom peaks, when zooplankton abundance has already decreased significantly

    Non-indigenous species refined national baseline inventories: a synthesis in the context of the European Union’s Marine Strategy Framework Directive

    No full text
    Refined baseline inventories of non-indigenous species (NIS) are set per European Union Member State (MS), in the context of the Marine Strategy Framework Directive (MSFD). The inventories are based on the initial assessment of the MSFD (2012) and the updated data of the European Alien Species Information Network, in collaboration with NIS experts appointed by the MSs. The analysis revealed that a large number of NIS was not reported from the initial assessments. Moreover, several NIS initially listed are currently considered as native in Europe or were proven to be historical misreportings. The refined baseline inventories constitute a milestone for the MSFD Descriptor 2 implementation, providing an improved basis for reporting new NIS introductions, facilitating the MSFD D2 assessment. In addition, the inventories can help MSs in the establishment of monitoring systems of targeted NIS, and foster cooperation on monitoring of NIS across or within shared marine subregions.JRC.D.2-Water and Marine Resource

    Lista de especies exóticas acuáticas de la Península Ibérica (2020)

    No full text
    Se presenta una lista actualizada de las especies exóticas que se encuentran en etapa de establecimiento o de propagación de la invasión en aguas continentales de la península ibérica. La lista está basada en la evaluación sistemática de los datos en colaboración con un amplio equipo de expertos de España y Portugal. Esta lista de actualización es un instrumento de apoyo importante para la aplicación del Reglamento de la Unión Europea (UE) sobre las especies exóticas invasoras (EEI) y también proporciona una base objetiva para el examen de su aplicación. En última instancia, la información incluida puede utilizarse para supervisar el cumplimiento del objetivo de la Estrategia de la UE sobre diversidad biológica hasta 2030 para combatir las EEI, pero también para la aplicación de otras políticas de la UE con requisitos sobre especies exóticas, como las Directivas de Hábitats y Aves, la Directiva Marco sobre la Estrategia Marina (DMEM) y la Directiva Marco del Agua (DMA)
    corecore