138 research outputs found

    Nucleotide excision repair efficiency in quiescent human fibroblasts is modulated by circadian clock

    Get PDF
    The efficiency of Nucleotide Excision Repair (NER)process is crucial for maintaining genomic integrity because in many organisms, including humans, it represents the only system able to repair a wide range of DNA damage. The aim of the work was to investigate whether the efficiency of the repair of photoproducts induced by UV-light is affected by the circadian phase at which irradiation occurred. NER activity has been analyzed in human quiescent fibroblasts (in the absence of the cell cycle effect), in which circadian rhythmicity has been synchronized with a pulse of dexamethasone. Our results demonstrate that both DNA damage induction and repair efficiency are strictly dependent on the phase of the circadian rhythm at which the cells are UV-exposed. Furthermore, the differences observed between fibroblasts irradiated at different circadian times (CTs) are abolished when the clock is obliterated. In addition, we observe that chromatin structure is regulated by circadian rhythmicity. Maximal chromatin relaxation occurred at the same CT when photoproduct formation and removal were highest. Our data suggest that the circadian clock regulates both the DNA sensitivity to UV damage and the efficiency of NER by controlling chromatin condensation mainly through histone acetylatio

    Effect of Unloading Condition on the Healing Process and Effectiveness of Platelet Rich Plasma as a Countermeasure: Study on In Vivo and In Vitro Wound Healing Models

    Get PDF
    Wound healing is a very complex process that allows organisms to survive injuries. It is strictly regulated by a number of biochemical and physical factors, mechanical forces included. Studying wound healing in space is interesting for two main reasons: (i) defining tools, procedures, and protocols to manage serious wounds and burns eventually occurring in future long-lasting space exploration missions, without the possibility of timely medical evacuation to Earth; (ii) understanding the role of gravity and mechanical factors in the healing process and scarring, thus contributing to unravelling the mechanisms underlying the switching between perfect regeneration and imperfect repair with scarring. In the study presented here, a new in vivo sutured wound healing model in the leech (Hirudo medicinalis) has been used to evaluate the effect of unloading conditions on the healing process and the effectiveness of platelet rich plasma (PRP) as a countermeasure. The results reveal that microgravity caused a healing delay and structural alterations in the repair tissue, which were prevented by PRP treatment. Moreover, investigating the effects of microgravity and PRP on an in vitro wound healing model, it was found that PRP is able to counteract the microgravity-induced impairment in fibroblast migration to the wound site. This could be one of the mechanisms underlying the effectiveness of PRP in preventing healing impairment in unloading conditions

    Nucleotide excision repair efficiency in quiescent human fibroblasts is modulated by circadian clock

    Get PDF
    The efficiency of Nucleotide Excision Repair (NER)process is crucial for maintaining genomic integrity because in many organisms, including humans, it represents the only system able to repair a wide range of DNA damage. The aim of the work was to investigate whether the efficiency of the repair of photoproducts induced by UV-light is affected by the circadian phase at which irradiation occurred. NER activity has been analyzed in human quiescent fibroblasts (in the absence of the cell cycle effect), in which circadian rhythmicity has been synchronized with a pulse of dexamethasone. Our results demonstrate that both DNA damage induction and repair efficiency are strictly dependent on the phase of the circadian rhythm at which the cells are UV-exposed. Furthermore, the differences observed between fibroblasts irradiated at different circadian times (CTs) are abolished when the clock is obliterated. In addition, we observe that chromatin structure is regulated by circadian rhythmicity. Maximal chromatin relaxation occurred at the same CT when photoproduct formation and removal were highest. Our data suggest that the circadian clock regulates both the DNA sensitivity to UV damage and the efficiency of NER by controlling chromatin condensation mainly through histone acetylation

    A mature cluster with X-ray emission at z=2.07

    Get PDF
    We report evidence of a fully established galaxy cluster at z=2.07, consisting of a ~20sigma overdensity of red, compact spheroidal galaxies spatially coinciding with extended X-ray emission detected with XMM-Newton. We use VLT VIMOS and FORS2 spectra and deep Subaru, VLT and Spitzer imaging to estimate the redshift of the structure from a prominent z=2.07 spectroscopic redshift spike of emission-line galaxies, concordant with the accurate 12-band photometric redshifts of the red galaxies. Using NICMOS and Keck AO observations, we find that the red galaxies have elliptical morphologies and compact cores. While they do not form a tight red sequence, their colours are consistent with that of a >1.3$~Gyr population observed at z~2.1. From an X-ray luminosity of .2*10^43 erg s^-1 and the stellar mass content of the red galaxy population, we estimate a halo mass of 5.3-8*10^13 Msun, comparable to the nearby Virgo cluster. These properties imply that this structure could be the most distant, mature cluster known to date and that X-ray luminous, elliptical-dominated clusters are already forming at substantially earlier epochs than previously known.Comment: 14 pages, 12 figures; accepted for publication in Astronomy & Astrophysic

    Analysis of miRNA and mRNA Expression Profiles Highlights Alterations in Ionizing Radiation Response of Human Lymphocytes under Modeled Microgravity

    Get PDF
    BACKGROUND: Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of \u3b3-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of "Response to DNA damage" is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. CONCLUSIONS/SIGNIFICANCE: On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL

    Modeled microgravity affects cell survival and HPRT mutant frequency, but not the expression of DNA repair genes in human lymphocytes irradiated with ionising radiation

    No full text
    We analysed the possibility that a reduced gravitational force impairs the efficiency of DNA repair, increasing the risk of the exposure to conditions occurring during spaceflight: i.e., ionising radiation and microgravity. To obtain information on the effects of the reduced gravity in repairing DNA damage induced by radiation, we compared cell survival and mutant frequency at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus in human peripheral blood lymphocytes (PBL) irradiated and subsequently incubated for 24h in 1g or modeled microgravity. A weak decrease of the surviving fraction and a significant increase of the HPRT mutant frequency were observed in PBL incubated in modeled microgravity after irradiation compared with those maintained in 1g. Given the increase of HPRT mutants observed in MMG, we investigated whether modeled microgravity can alter the transcription of 14 genes representative of the main DNA repair pathways: non-homologous end joining (NHEJ), homologous recombination (HR), base excision repair (BER) and nucleotide excision repair (NER). The transcriptional profiles of almost all BER and NER genes were up-regulated in irradiated PBL, whereas the expression of HR and NHEJ genes was only slightly or not affected by radiation. Incubation in modeled microgravity after irradiation did not significantly change the expression of genes involved in DNA repair, suggesting that transcriptional impairment was not responsible for the increase of mutant frequency observed in irradiated cells incubated in microgravity in comparison to the static 1g condition
    • …
    corecore