28 research outputs found

    Etude sur la pensée animale : continuité neuro-cognitive de la catégorisation visuelle

    Get PDF
    Est-ce que les animaux pensent? Quelle est la nature des mĂ©canismes qui dirigent leurs comportements? Peut-on comparer ces mĂ©canismes au fonctionnement de l'esprit humain ? Ces questions animent les dĂ©bats scientifiques, philosophiques et thĂ©ologiques depuis des millĂ©naires. L'idĂ©e d'une discontinuitĂ© fondamentale entre l'esprit humain et les rouages de l'animal-machine, prĂŽnĂ©e par Descartes, s'oppose Ă  l'hypothĂšse de continuitĂ© de Darwin selon laquelle, la diffĂ©rence entre les capacitĂ©s mentales de l'homme et de l'animal serait de degrĂ© et non de nature. Dans cette thĂšse, fort des rĂ©centes avancĂ©es mĂ©thodologiques et thĂ©oriques dans l'Ă©tude du comportement animal et des neurosciences, nous partons Ă  la recherche de la pierre de rosette pouvant Ă©clairer ce dĂ©bat : l'homologie neuro-cognitive fonctionnelle. Existe-t-il un fonctionnement nerveux commun Ă  plusieurs espĂšces (et notamment Ă  l'homme), supportant un mĂȘme fonctionnement cognitif ? Nous focalisons notre recherche sur l'une des fonctions clefs de l'esprit humain, qui semble aussi trĂšs rĂ©pandue dans le monde animal : la catĂ©gorisation. Former des concepts -regrouper mentalement les objets ou Ă©vĂ©nements auxquelles nous sommes confrontĂ©s en catĂ©gories- permet de simplifier, de donner un sens et de rĂ©agir de maniĂšre appropriĂ©e aux flux perceptuels incessants issus de nos sens. En testant des sujets humains et macaques dans un protocole rigoureusement identique de catĂ©gorisation visuelle rapide, en particulier, en contrĂŽlant l'influence de l'information contextuelle de la scĂšne visuelle sur les performances de catĂ©gorisation de l'objet, nous montrons ici que les deux espĂšces de primates semblent bien avoir recours Ă  des reprĂ©sentations ou concepts visuels similaires pour rĂ©soudre cette tĂąche. Mieux, le dĂ©veloppement de nouvelles mĂ©thodes d'analyses multivariĂ©es des potentiels de champs corticaux, nous permet de lire, essai par essai, l'Ă©mergence de reprĂ©sentations neuronales associĂ©es Ă  cette tĂąche de catĂ©gorisation. En appliquant ces mĂ©thodes chez le singe, en EEG de surface chez l'homme et chez des patients Ă©pileptiques implantĂ©s pour raison mĂ©dicale, on met en Ă©vidence le rĂŽle analogue, chez ces deux espĂšces de primates, de la voie visuelle ventrale dans la formation ultra-rapide de ces reprĂ©sentations catĂ©gorielles. Pour rĂ©sumer, la capacitĂ© de catĂ©gorisation visuelle rapide, semble ĂȘtre un trait neurocognitif partagĂ© par l'homme et le macaque, probablement hĂ©ritĂ©e d'un ancĂȘtre commun. L'existence d'une telle homologie est un argument pour l'hypothĂšse de continuitĂ© et permet donc d'envisager une Ă©volution de la cognition. Enfin, si on considĂšre la catĂ©gorisation comme un Ă©lĂ©ment clef de la pensĂ©e humaine, alors ces rĂ©sultats suggĂšrent l'existence d'une pensĂ©e chez le macaque, dont au moins une partie fonctionne comme la nĂŽtre.Do animals think? What are the mechanisms supporting their behavior? Can we compare these mechanisms with human mind? These questions animate scientific, philosophical and theological debates for millennia. The idea of a fundamental discontinuity between human mind and animal- machine workings, advocated by Descartes, is opposed to Darwin's assumption of continuity that suppose a difference of degree and not of kind between human's and animals' minds. In this thesis, based on recent theoretical and methodological advances in animal behavior and neuroscience, we go in search of the Rosetta Stone that can inform this debate: a functional neuro-cognitive homology. Is there a neural mechanism, shared by several species (including humans), supporting the same cognitive function? We focus our research on one of the key functions of human mind, which also seems widespread in the animal world: categorization ability. The making of concepts -to mentally regroup objects, or events, we face in categories- simplifies, makes sense and allows responding appropriately to the continuous perceptual streams. Testing humans and macaques in exactly the same protocol of rapid visual categorization, in particular, by controlling the influence of contextual information from the visual scene on object categorization performances, we show here that the two primates seem to rely on similar concepts or visual representations to solve this task. More, with a new multivariate pattern analysis for cortical field potentials, we can read, trial by trial, the emergence of neural representations associated with such categorization task. By applying these methods in monkeys, surface EEG in humans and in patients with epilepsy, implanted for medical reasons, we highlight the similar role of the ventral visual pathway to build quick categorical representations, in both species of primates. To summarize, the ability of rapid visual categorization seems to be a neuro-cognitive trait shared by humans and macaques, probably inherited from a common ancestor. The existence of such homology is an argument for the continuity hypothesis and can therefore justify an evolution of cognition. Finally, if we consider the categorization as a key element of human thought, then these results suggest the existence of a thought in macaques, which at least partially works like ours

    Herbivory on the pedunculate oak along an urbanization gradient in Europe : Effects of impervious surface, local tree cover, and insect feeding guild

    Get PDF
    Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intraurban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that – just like in non-urban areas – plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.Agence Nationale de la Recherche, Grant/Award Number: ANR-10--LABX-45; Fondation BNP Paribas.info:eu-repo/semantics/publishedVersio

    Herbivory on the pedunculate oak along an urbanization gradient in Europe : Effects of impervious surface, local tree cover, and insect feeding guild

    Get PDF
    Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.Peer reviewe

    Herbivory on the pedunculate oak along an urbanization gradient in Europe: Effects of impervious surface, local tree cover, and insect feeding guild

    Get PDF
    Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions

    Neurocognitive continuity of visual categorization in primates

    No full text
    Do animals think? What are the mechanisms supporting their behavior? Can we compare these mechanisms with human mind? These questions animate scientific, philosophical and theological debates for millennia. The idea of a fundamental discontinuity between human mind and animal-machine workings, advocated by Descartes, is opposed to Darwin's assumption of continuity that supposes a difference of degree and not of kind between humans' and animals' minds. In this thesis, based on recent theoretical and methodological advances in animal behavior and neuroscience, we go in search of the Rosetta Stone that can inform this debate: a functional neurocognitive homology. Is there a neural mechanism, shared by several species (including humans), supporting the same cognitive function? We focus our research on one of the key functions of human mind, which also seems widespread in the animal world: categorization ability. The making of concepts - to mentally regroup objects, or events we face in categories - simplifies, makes sense and allows responding appropriately to the continuous perceptual streams. Testing humans and macaques in exactly the same protocol of rapid visual categorization, in particular by controlling the influence of contextual information from the visual scene on object categorization performances, we show here that the two primates seem to rely on similar concepts or visual representations to solve this task. More, with a new multivariate pattern analysis for cortical field potentials, we can read, trial by trial, the emergence of neural representations associated with such categorization task. By applying these methods in monkeys, surface EEG in humans and in patients with epilepsy, implanted for medical reasons, we highlight the similar role of the ventral visual pathway to build quick categorical representations, in both species of primates. To summarize, the ability of rapid visual categorization seems to be a neuro-cognitive trait shared by humans and macaques, probably inherited from a common ancestor. The existence of such homology is an argument for the continuity hypothesis and can therefore justify an evolution of cognition. Finally, if we consider the categorization as a key element of human thought, then these results suggest the existence of a thought in macaques, which at least partially works like ours.Est-ce que les animaux pensent? Quelle est la nature des mĂ©canismes qui dirigent leurs comportements? Peut-on comparer ces mĂ©canismes au fonctionnement de l'esprit humain? Ces questions animent les dĂ©bats scientifiques, philosophiques et thĂ©ologiques depuis des millĂ©naires. L'idĂ©e d'une discontinuitĂ© fondamentale entre l'esprit humain et les rouages de l'animal-machine, prĂŽnĂ©e par Descartes, s'oppose Ă  l'hypothĂšse de continuitĂ© de Darwin selon laquelle la diffĂ©rence entre les capacitĂ©s mentales de l'homme et de l'animal serait de degrĂ© et non de nature. Dans cette thĂšse, fort des rĂ©centes avancĂ©es mĂ©thodo-logiques et thĂ©oriques dans l'Ă©tude du comportement animal et des neurosciences, nous partons Ă  la recherche de la pierre de Rosette pouvant Ă©clairer ce dĂ©bat: l'homologie neuro-cognitive fonctionnelle. Existe-t-il un fonctionnement nerveux commun Ă  plusieurs espĂšces (et notamment Ă  l'homme), supportant un mĂȘme fonctionnement cognitif? Nous focalisons notre recherche sur l'une des fonctions clefs de l'esprit humain, qui semble aussi trĂšs rĂ©pandue dans le monde animal : la catĂ©gorisation. Former des concepts - regrouper mentalement les objets ou Ă©vĂ©nements auxquelles nous sommes confrontĂ©s en catĂ©gories - permet de simplifier, de donner un sens et de rĂ©agir de maniĂšre appropriĂ©e aux flux perceptuels incessants issus de nos sens. En testant des sujets humains et macaques dans un protocole rigoureusement identique de catĂ©gorisation visuelle rapide, en particulier en contrĂŽlant l'influence de l'information contextuelle de la scĂšne visuelle sur les performances de catĂ©gorisation de l'objet, nous montrons ici que les deux espĂšces de primates semblent bien avoir recours Ă  des reprĂ©sentations ou concepts visuels similaires pour rĂ©soudre cette tĂąche. Mieux, le dĂ©veloppement de nouvelles mĂ©thodes d'analyses multivariĂ©es des potentiels de champs corticaux nous permet de lire, essai par essai, l'Ă©mergence de reprĂ©sentations neuronales associĂ©es Ă  cette tĂąche de catĂ©gorisation. En appliquant ces mĂ©thodes chez le singe, en EEG de surface chez l'homme et chez des patients Ă©pileptiques implantĂ©s pour raison mĂ©dicale, on met en Ă©vidence le rĂŽle analogue, chez ces deux espĂšces de primates, de la voie visuelle ventrale dans la formation ultra-rapide de ces reprĂ©sentations catĂ©gorielles. Pour rĂ©sumer, la capacitĂ© de catĂ©gorisation visuelle rapide semble ĂȘtre un trait neurocognitif partagĂ© par l'homme et le macaque, probablement hĂ©ritĂ©e d'un ancĂȘtre commun. L'existence d'une telle homologie est un argument pour l'hypothĂšse de continuitĂ© et permet donc d'envisager une Ă©volution de la cognition. Enfin, si l'on considĂšre la catĂ©gorisation comme un Ă©lĂ©ment clef de la pensĂ©e humaine, alors ces rĂ©sultats suggĂšrent l'existence d'une pensĂ©e chez le macaque, dont au moins une partie fonctionne comme la nĂŽtre

    Cauchoix, Chow, van Horik et al.

    No full text
    To further our understanding of the evolution of cognition we gathered 44 datasets of 26 species and used meta-analysis to evaluate whether cognitive performance is repeatable across taxa. We assessed individual repeatability in performance on the same task presented at different time intervals (Temporal Repeatability), and on different tasks that measure the same putative cognitive ability (Contextual Repeatability). We found support for both temporal and contextual repeatability of individual variation in cognitive performance, with significant mean R estimates ranging between 0.15 and 0.28. Our overall findings highlight the widespread occurrence of consistent inter-individual variation in cognition

    How plausible is a subcortical account of rapid visual recognition?

    Get PDF
    International audiencePrimates recognize objects in natural visual scenes with great rapidity. The ventral visual cortex is usually assumed to play a major role in this ability ("high- road"). However, the "low-road" alternative frequently proposed is that the visual cortex is bypassed by a rapid subcortical route to the amygdala, especially in the case of biologically relevant and emotional stimuli. This paper highlights the lack of evidence from psychophysics and computational models to support this "low-road" alternative. Most importantly, the timing of neural responses invites a serious reconsideration of the low-road role in rapid processing of visual objects

    The neural speed of familiar face recognition

    No full text
    International audienceRapidly recognizing familiar people from their faces appears critical for social interactions (e.g., to differentiate friend from foe). However, the actual speed at which the human brain can distinguish familiar from unknown faces still remains debated. In particular, it is not clear whether familiarity can be extracted from rapid face individualization or if it requires additional time consuming processing. We recorded scalp EEG activity in 28 subjects performing a go/no-go, famous/non-famous, unrepeated, face recognition task. Speed constraints were used to encourage subjects to use the earliest familiarity information available. Event related potential (ERP) analyses show that both the N170 and the N250 components were modulated by familiarity. The N170 modulation was related to behaviour: subjects presenting the strongest N170 modulation were also faster but less accurate than those who only showed weak N170 modulation. A complementary Multi-Variate Pattern Analysis (MVPA) confirmed ERP results and provided some more insights into the dynamics of face recognition as the N170 differential effect appeared to be related to a first transitory phase (transitory bump of decoding power) starting at around 140 ms, which returned to baseline afterwards. This bump of activity was henceforth followed by an increase of decoding power starting around 200 ms after stimulus onset. Overall, our results suggest that rather than a simple single-process, familiarity for faces may rely on a cascade of neural processes, including a coarse and fast stage starting at 140 ms and a more refined but slower stage occurring after 200 ms
    corecore