172 research outputs found

    In Silico Assigned Resistance Genes Confer Bifidobacterium with Partial Resistance to Aminoglycosides but Not to Β-Lactams

    Get PDF
    peer-reviewedBifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria.Fiona Fouhy is in receipt of an Irish Research Council for Science, Engineering and Technology EMBARK scholarship and is a Teagasc Walsh fellow. Research in the PDC laboratory is supported by the Irish Government under the National Development Plan through the Science Foundation Ireland Investigator award 11/PI/1137. Research in the RPR, CS, PDC and DvS laboratories is also supported by the Science Foundation of Ireland-funded Centre for Science, Engineering and Technology, the Alimentary Pharmabiotic Centre (grant no.s 02/CE/B124 and 07/CE/B1368) and a HRB postdoctoral fellowship (Grant no. PDTM/20011/9) awarded to MOCM

    Multiple strand displacement amplification of mitochondrial DNA from clinical samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whole genome amplification (WGA) methods allow diagnostic laboratories to overcome the common problem of insufficient DNA in patient specimens. Further, body fluid samples useful for cancer early detection are often difficult to amplify with traditional PCR methods. In this first application of WGA on the entire human mitochondrial genome, we compared the accuracy of mitochondrial DNA (mtDNA) sequence analysis after WGA to that performed without genome amplification. We applied the method to a small group of cancer cases and controls and demonstrated that WGA is capable of increasing the yield of starting DNA material with identical genetic sequence.</p> <p>Methods</p> <p>DNA was isolated from clinical samples and sent to NIST. Samples were amplified by PCR and those with no visible amplification were re-amplified using the Multiple Displacement Amplificaiton technique of whole genome amplification. All samples were analyzed by mitochip for mitochondrial DNA sequence to compare sequence concordance of the WGA samples with respect to native DNA. Real-Time PCR analysis was conducted to determine the level of WGA amplification for both nuclear and mtDNA.</p> <p>Results</p> <p>In total, 19 samples were compared and the concordance rate between WGA and native mtDNA sequences was 99.995%. All of the cancer associated mutations in the native mtDNA were detected in the WGA amplified material and heteroplasmies in the native mtDNA were detected with high fidelity in the WGA material. In addition to the native mtDNA sequence present in the sample, 13 new heteroplasmies were detected in the WGA material.</p> <p>Conclusion</p> <p>Genetic screening of mtDNA amplified by WGA is applicable for the detection of cancer associated mutations. Our results show the feasibility of this method for: 1) increasing the amount of DNA available for analysis, 2) recovering the identical mtDNA sequence, 3) accurately detecting mtDNA point mutations associated with cancer.</p

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Glycoside hydrolase family 13 α-glucosidases encoded by Bifidobacterium breve UCC2003; A comparative analysis of function, structure and phylogeny

    Get PDF
    peer-reviewedBifidobacterium breve is a noted inhabitant and one of the first colonizers of the human gastro intestinal tract (GIT). The ability of this bacterium to persist in the GIT is reflected by the abundance of carbohydrate-active enzymes that are encoded by its genome. One such family of enzymes is represented by the α-glucosidases, of which three, Agl1, Agl2 and MelD, have previously been identified and characterized in the prototype B. breve strain UCC2003. In this report, we describe an additional B. breve UCC2003-encoded α-glucosidase, along with a B. breve UCC2003-encoded α-glucosidase-like protein, designated here as Agl3 and Agl4, respectively, which together with the three previously described enzymes belong to glycoside hydrolase (GH) family 13. Agl3 was shown to exhibit hydrolytic specificity towards the α-(1 → 6) linkage present in palatinose; the α-(1 → 3) linkage present in turanose; the α-(1 → 4) linkages found in maltotriose and maltose; and to a lesser degree, the α-(1 → 2) linkage found in sucrose and kojibiose; and the α-(1 → 5) linkage found in leucrose. Surprisingly, based on the substrates analyzed, Agl4 did not exhibit biologically relevant α-glucosidic activity. With the presence of four functionally active GH13 α-glucosidases, B. breve UCC2003 is capable of hydrolyzing all α-glucosidic linkages that can be expected in glycan substrates in the lower GIT. This abundance of α-glucosidases provides B. breve UCC2003 with an adaptive ability and metabolic versatility befitting the transient nature of growth substrates in the GIT.Department of Agriculture and Food's Food Institutional Research Measure (FIRM

    Analysis of Factors Driving Incident and Ascending Infection and the Role of Serum Antibody in Chlamydia trachomatis Genital Tract Infection

    Get PDF
    Background. Chlamydia trachomatis genital tract infection is a major cause of female reproductive morbidity. Risk factors for ascending infection are unknown, and the role for antibody in protection is not well established

    Identification of Chlamydia trachomatis Antigens Recognized by T Cells From Highly Exposed Women Who Limit or Resist Genital Tract Infection

    Get PDF
    Background. Natural infection induces partial immunity to Chlamydia trachomatis. Identification of chlamydial antigens that induce interferon γ (IFN-) secretion by T cells from immune women could advance vaccine development

    Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function

    Get PDF
    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10−9) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10−4-2.2 × 10−7. Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in genera

    Enhanced Virulence of Chlamydia muridarum Respiratory Infections in the Absence of TLR2 Activation

    Get PDF
    Chlamydia trachomatis is a common sexually transmitted pathogen and is associated with infant pneumonia. Data from the female mouse model of genital tract chlamydia infection suggests a requirement for TLR2-dependent signaling in the induction of inflammation and oviduct pathology. We hypothesized that the role of TLR2 in moderating mucosal inflammation is site specific. In order to investigate this, we infected mice via the intranasal route with C. muridarum and observed that in the absence of TLR2 activation, mice had more severe disease, higher lung cytokine levels, and an exaggerated influx of neutrophils and T-cells into the lungs. This could not be explained by impaired bacterial clearance as TLR2-deficient mice cleared the infection similar to controls. These data suggest that TLR2 has an anti-inflammatory function in the lung during Chlamydia infection, and that the role of TLR2 in mucosal inflammation varies at different mucosal surfaces

    Audible Image Description as an Accommodation in Statewide Assessments for Students with Visual and Print Disabilities.

    Get PDF
    Introduction:Although image description has been identified as an accommodation for presentations conducted in the classroom, only a few U.S. states have approved it for use in high-stakes assessments. This study examined the use of audible image description as an assessment accommodation for students with visual and print disabilities by investigating student comprehension under multiple conditions. Methods: Students in three western states in grades three through eight who had visual (n= 117) or print (n= 178) disabilities participated in an abbreviated test constructed of retired assessment questions in English language arts, mathematics, and science, that were aligned with each state's instructional standards, under conditions with and without standardized description of graphic images. The study used a within-subjects block design to collect and compare comprehension data under conditions where audible image description was both used and not used in an abbreviated test. Results: Results indicated that students who read braille were more likely to respond correctly under the audible image description condition, and students with visual and print disabilities who used print were equally likely to respond correctly regardless of condition. Discussion: Braille readers were more likely to obtain a correct answer when audible image description accompanied the question. Audible image description did not affect the likelihood of a correct response from students with print disabilities or students with visual disabilities who read print. Implications for practitioners: Audible image description is an accommodation that may help braille readers perform better on tests. Although the Partnership for Assessment of Readiness for College and Careers (PARCC) and Smarter Balanced consortia are taking steps to include image (or picture) descriptions in their assessment accommodations, teachers may want to develop a standard method for describing images and familiarize their braille readers to the strategy by including it in instruction and in classroom tests. Readers are referred to the National Center on Accessible Media’s online guidelines for image description

    Genome-wide association and functional follow-up reveals new loci for kidney function

    Get PDF
    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD
    corecore