20 research outputs found
Commissioning and first light results of an L'-band vortex coronagraph with the Keck II adaptive optics NIRC2 science instrument
On March 2015 an L'-band vortex coronagraph based on an Annular Groove Phase Mask made up of a diamond sub-wavelength grating was installed on NIRC2 as a demonstration project. This vortex coronagraph operates in the L' band not only in order to take advantage from the favorable star/planet contrast ratio when observing beyond the K band, but also to exploit the fact that the Keck II Adaptive Optics (AO) system delivers nearly extreme adaptive optics image quality (Strehl ratios values near 90%) at 3.7μm. We describe the hardware installation of the vortex phase mask during a routine NIRC2 service mission. The success of the project depends on extensive software development which has allowed the achievement of exquisite real-time pointing control as well as further contrast improvements by using speckle nulling to mitigate the effect of static speckles. First light of the new coronagraphic mode was on June 2015 with already very good initial results. Subsequent commissioning nights were interlaced with science nights by members of the VORTEX team with their respective scientific programs. The new capability and excellent results so far have motivated the VORTEX team and the Keck Science Steering Committee (KSSC) to offer the new mode in shared risk mode for 2016B
Commissioning and first light results of an L'-band vortex coronagraph with the Keck II adaptive optics NIRC2 science instrument
On March 2015 an L'-band vortex coronagraph based on an Annular Groove Phase Mask made up of a diamond sub-wavelength grating was installed on NIRC2 as a demonstration project. This vortex coronagraph operates in the L' band not only in order to take advantage from the favorable star/planet contrast ratio when observing beyond the K band, but also to exploit the fact that the Keck II Adaptive Optics (AO) system delivers nearly extreme adaptive optics image quality (Strehl ratios values near 90%) at 3.7μm. We describe the hardware installation of the vortex phase mask during a routine NIRC2 service mission. The success of the project depends on extensive software development which has allowed the achievement of exquisite real-time pointing control as well as further contrast improvements by using speckle nulling to mitigate the effect of static speckles. First light of the new coronagraphic mode was on June 2015 with already very good initial results. Subsequent commissioning nights were interlaced with science nights by members of the VORTEX team with their respective scientific programs. The new capability and excellent results so far have motivated the VORTEX team and the Keck Science Steering Committee (KSSC) to offer the new mode in shared risk mode for 2016B
The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III
The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with
new instrumentation and new surveys focused on Galactic structure and chemical
evolution, measurements of the baryon oscillation feature in the clustering of
galaxies and the quasar Ly alpha forest, and a radial velocity search for
planets around ~8000 stars. This paper describes the first data release of
SDSS-III (and the eighth counting from the beginning of the SDSS). The release
includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap,
bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a
third of the Celestial Sphere. All the imaging data have been reprocessed with
an improved sky-subtraction algorithm and a final, self-consistent photometric
recalibration and flat-field determination. This release also includes all data
from the second phase of the Sloan Extension for Galactic Understanding and
Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars
at both high and low Galactic latitudes. All the more than half a million
stellar spectra obtained with the SDSS spectrograph have been reprocessed
through an improved stellar parameters pipeline, which has better determination
of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from
submitted version
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic
data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data
release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median
z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar
spectra, along with the data presented in previous data releases. These spectra
were obtained with the new BOSS spectrograph and were taken between 2009
December and 2011 July. In addition, the stellar parameters pipeline, which
determines radial velocities, surface temperatures, surface gravities, and
metallicities of stars, has been updated and refined with improvements in
temperature estimates for stars with T_eff<5000 K and in metallicity estimates
for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars
presented in DR8, including stars from SDSS-I and II, as well as those observed
as part of the SDSS-III Sloan Extension for Galactic Understanding and
Exploration-2 (SEGUE-2).
The astrometry error introduced in the DR8 imaging catalogs has been
corrected in the DR9 data products. The next data release for SDSS-III will be
in Summer 2013, which will present the first data from the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) along with another year of
data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at
http://www.sdss3.org/dr
Erratum: “The eighth data release of the Sloan Digital Sky Survey: first data from SDSS-III” (2011, ApJS, 193, 29)
Section 3.5 of Aihara et al. (2011) described various sources of systematic error in the astrometry of the imaging data of the Sloan Digital Sky Survey (SDSS). In addition to these sources of error, there is an additional and more serious error, which introduces a large systematic shift in the astrometry over a large area around the north celestial pole. The region has irregular boundaries but in places extends as far south as declination δ ≈ 41◦. The sense of the shift is that the positions of all sources in the affected area are offset by roughly 250 mas in a northwest direction. We have updated the SDSS online documentation to reflect these errors, and to provide detailed quality information for each SDSS field
SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems
Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II),
SDSS-III is a program of four spectroscopic surveys on three scientific themes:
dark energy and cosmological parameters, the history and structure of the Milky
Way, and the population of giant planets around other stars. In keeping with
SDSS tradition, SDSS-III will provide regular public releases of all its data,
beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an
overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5
million massive galaxies and Lya forest spectra of 150,000 quasars, using the
BAO feature of large scale structure to obtain percent-level determinations of
the distance scale and Hubble expansion rate at z<0.7 and at z~2.5. SEGUE-2,
which is now completed, measured medium-resolution (R=1800) optical spectra of
118,000 stars in a variety of target categories, probing chemical evolution,
stellar kinematics and substructure, and the mass profile of the dark matter
halo from the solar neighborhood to distances of 100 kpc. APOGEE will obtain
high-resolution (R~30,000), high signal-to-noise (S/N>100 per resolution
element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars,
measuring separate abundances for ~15 elements per star and creating the first
high-precision spectroscopic survey of all Galactic stellar populations (bulge,
bar, disks, halo) with a uniform set of stellar tracers and spectral
diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars
with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to
detect giant planets with periods up to two years, providing an unprecedented
data set for understanding the formation and dynamical evolution of giant
planet systems. (Abridged)Comment: Revised to version published in The Astronomical Journa
Preliminary results of simulations for the adaptive optics system of the Large Binocular Telescope
International audienc
Characterizing the performance of the NIRC2 vortex coronagraph at W. M. Keck Observatory
International audienceThe NIRC2 vortex coronagraph is an instrument on Keck II designed to directly image exoplanets and circumstellar disks at mid-infrared bands L′ (3.4–4.1 μm) and Ms (4.55–4.8 μm). We analyze imaging data and corresponding adaptive optics telemetry, observing conditions, and other metadata over a three-year time period to characterize the performance of the instrument and predict the detection limits of future observations. We systematically process images from 359 observations of 304 unique stars to subtract residual starlight (i.e., thecoronagraphic point-spread function) of the target star using two methods: angular differential imaging (ADI) and reference star differential imaging (RDI). We find that for the typical parallactic angle (PA) rotation of our data set (∼10°), RDI provides gains over ADI for angular separations smaller than 0 25. Furthermore, we find a power-law relation between the angular separation from the host star and the minimum PA rotation required for ADI to outperform RDI, with a power-law index of −1.18 ± 0.08. Finally, we use random forest models to estimate ADI and RDI post-processed detection limits a priori. These models, which we provide publicly on a website, explain 70%–80% of the variance in ADI detection limits and 30%–50% of the variance in RDI detection limits. Averaged over a range of angular separations, our models predict both ADI and RDI contrast to within a factor of 2. These results illuminate important factors in high-contrast imaging observations with the NIRC2 vortex coronagraph, help improve observing strategies, and inform future upgrades to the hardware