259 research outputs found

    Slow and Fast Neocortical Oscillations in the Senescence-Accelerated Mouse Model SAMP8

    Get PDF
    The senescence-accelerated mouse prone 8 (SAMP8) model is characterized by accelerated, progressive cognitive decline as well as Alzheimer's disease (AD)-like neurodegenerative changes, and resembles the etiology of multicausal, sporadic late-onset/age-related AD in humans. Our aim was to find whether these AD-like pathological features, together with the cognitive deficits present in the SAMP8 strain, are accompanied by disturbances in cortical network activity with respect to control mice (SAM resistance 1, SAMR1) and, if so, how the alterations in cortical activity progress with age. For this purpose, we characterized the extracellular spontaneous oscillatory activity in different regions of the cerebral cortex of SAMP8 and SAMR1 mice under ketamine anesthesia at 5 and 7 months of age. Under these conditions, slow oscillations and fast rhythms generated in the cortical network were recorded and different parameters of these oscillations were quantified and compared between SAMP8 and their control, SAMR1 mice. The average frequency of slow oscillations in SAMP8 mice was decreased with respect to the control mice at both studied ages. An elongation of the silent periods or Down states was behind the decreased slow oscillatory frequency while the duration of active or Up states remained stable. SAMP8 mice also presented increased cycle variability and reduced high frequency components during Down states. During Up states, the power peak in the gamma range was displaced towards lower frequencies in all the cortical areas of SAMP8 with respect to control mice suggesting that the spectral profile of SAMP8 animals is shifted towards lower frequencies. This shift is reminiscent to one of the principal hallmarks of electroencephalography (EEG) abnormalities in patients with Alzheimer's disease, and adds evidence in support of the suitability of the SAMP8 mouse as a model of this disease. Although some of the differences between SAMP8 and control mice were emphasized with age, the evolution of the studied parameters as SAMR1 mice got older indicates that the SAMR1 phenotype tends to converge with that of SAMP8 animals. To our knowledge, this is the first systematic characterization of the cortical slow and fast rhythms in the SAMP8 strain and it provides useful insights about the cellular and synaptic mechanisms underlying the reported alterations

    Minimal gauge origin of baryon triality and flavorful signatures at the LHC

    Full text link
    Baryon triality (B3) is a Z3 discrete symmetry that can protect the proton from decay. Although its realization does not require supersymmetry, it is particularly appealing in the supersymmetry as an alternative to the popular R-parity. We discuss the issues in gauging B3, and present the minimal supersymmetric model with B3 as the remnant discrete symmetry of a TeV scale U(1) gauge symmetry. A flavor-dependent U(1) charge is necessary to achieve this, and it results in very distinguishable and flavorful predictions for the LHC experiments. We find a complementarity between a 2-lepton sneutrino resonance and a 4-lepton Z' resonance in the supersymmetry search. In addition, we introduce baryon tetrality (B4), which would play an equivalent role if there are four fermion generations.Comment: Version to appear in PL

    Rocking ratchet induced by pure magnetic potentials with broken reflection symmetry

    Get PDF
    A ratchet effect (the rectification of an ac injected current) which is purely magnetic in origin has been observed in a superconducting-magnetic nanostructure hybrid. The hybrid consists of a superconducting Nb film in contact with an array of nanoscale magnetic triangles, circular rings or elliptical rings. The arrays were placed into well-defined remanent magnetic states by application of different magnetic field cycles. The stray fields from these remanent states provide a magnetic landscape which influences the motion of superconducting vortices. We examined both randomly varying landscapes from demagnetized samples, and ordered landscapes from samples at remanence after saturation in which the magnetic rings form parallel onion states containing two domain walls. The ratchet effect is absent if the rings are in the demagnetized state or if the vortices propagate parallel to the magnetic reflection symmetry axis (perpendicular to the magnetic domain walls) in the ordered onion state. On the other hand, when the vortices move perpendicular to the magnetic reflection symmetry axis in the ordered onion state (parallel to the domain walls) a clear ratchet effect is observed. This behavior differs qualitatively from that observed in samples containing arrays of triangular Ni nanostructures, which show a ratchet of structural origin.Comment: 16 pages, 6 figures and 1 tabl

    FTLD-TDP assemblies seed neoaggregates with subtype-specific features via a prion-like cascade

    Get PDF
    Morphologically distinct TDP-43 aggregates occur in clinically different FTLD-TDP subtypes, yet the mechanism of their emergence and contribution to clinical heterogeneity are poorly understood. Several lines of evidence suggest that pathological TDP-43 follows a prion-like cascade, but the molecular determinants of this process remain unknown. We use advanced microscopy techniques to compare the seeding properties of pathological FTLD-TDP-A and FTLD-TDP-C aggregates. Upon inoculation of patient-derived aggregates in cells, FTLD-TDP-A seeds amplify in a template-dependent fashion, triggering neoaggregation more efficiently than those extracted from FTLD-TDP-C patients, correlating with the respective disease progression rates. Neoaggregates are sequentially phosphorylated with N-to-C directionality and with subtype-specific timelines. The resulting FTLD-TDP-A neoaggregates are large and contain densely packed fibrils, reminiscent of the pure compacted fibrils present within cytoplasmic inclusions in postmortem brains. In contrast, FTLD-TDP-C dystrophic neurites show less dense fibrils mixed with cellular components, and their respective neoaggregates are small, amorphous protein accumulations. These cellular seeding models replicate aspects of the patient pathological diversity and will be a useful tool in the quest for subtype-specific therapeutics

    Tissue Plasminogen Activator–Mediated Fibrinolysis Protects against Axonal Degeneration and Demyelination after Sciatic Nerve Injury

    Get PDF
    Tissue plasminogen activator (tPA) is a serine protease that converts plasminogen to plasmin and can trigger the degradation of extracellular matrix proteins. In the nervous system, under noninflammatory conditions, tPA contributes to excitotoxic neuronal death, probably through degradation of laminin. To evaluate the contribution of extracellular proteolysis in inflammatory neuronal degeneration, we performed sciatic nerve injury in mice. Proteolytic activity was increased in the nerve after injury, and this activity was primarily because of Schwann cell–produced tPA. To identify whether tPA release after nerve damage played a beneficial or deleterious role, we crushed the sciatic nerve of mice deficient for tPA. Axonal demyelination was exacerbated in the absence of tPA or plasminogen, indicating that tPA has a protective role in nerve injury, and that this protective effect is due to its proteolytic action on plasminogen. Axonal damage was correlated with increased fibrin(ogen) deposition, suggesting that this protein might play a role in neuronal injury. Consistent with this idea, the increased axonal degeneration phenotype in tPA- or plasminogen-deficient mice was ameliorated by genetic or pharmacological depletion of fibrinogen, identifying fibrin as the plasmin substrate in the nervous system under inflammatory axonal damage. This study shows that fibrin deposition exacerbates axonal injury, and that induction of an extracellular proteolytic cascade is a beneficial response of the tissue to remove fibrin. tPA/plasmin-mediated fibrinolysis may be a widespread protective mechanism in neuroinflammatory pathologies

    Evaluating the association between artificial light-at-night exposure and breast and prostate cancer risk in Spain (MCC-Spain Study)

    Get PDF
    Background: Night shift work, exposure to light at night (ALAN) and circadian disruption may increase the risk of hormone-dependent cancers. Objectives: We evaluated the association of exposure to ALAN during sleeping time with breast and prostate cancer in a population based multicase–control study (MCC-Spain), among subjects who had never worked at night. We evaluated chronotype, a characteristic that may relate to adaptation to light at night. Methods: We enrolled 1,219 breast cancer cases, 1,385 female controls, 623 prostate cancer cases, and 879 male controls from 11 Spanish regions in 2008–2013. Indoor ALAN information was obtained through questionnaires. Outdoor ALAN was analyzed using images from the International Space Station (ISS) available for Barcelona and Madrid for 2012–2013, including data of remotely sensed upward light intensity and blue light spectrum information for each geocoded longest residence of each MCC-Spain subject. Results: Among Barcelona and Madrid participants with information on both indoor and outdoor ALAN, exposure to outdoor ALAN in the blue light spectrum was associated with breast cancer [adjusted odds ratio (OR) for highest vs. lowest tertile, OR=1.47 ; 95% CI: 1.00, 2.17] and prostate cancer (OR=2.05 ; 95% CI: 1.38, 3.03). In contrast, those exposed to the highest versus lowest intensity of outdoor ALAN were more likely to be controls than cases, particularly for prostate cancer. Compared with those who reported sleeping in total darkness, men who slept in “quite illuminated” bedrooms had a higher risk of prostate cancer (OR=2.79 ; 95% CI: 1.55, 5.04), whereas women had a slightly lower risk of breast cancer (OR=0.77 ; 95% CI: 0.39, 1.51). Conclusion: Both prostate and breast cancer were associated with high estimated exposure to outdoor ALAN in the blue-enriched light spectrum. https://doi.org/10.1289/EHP183

    The regulation and deregulation of Wnt signaling by PARK genes in health and disease

    Get PDF
    Wingless/Int (Wnt) signaling pathways are signal transduction mechanisms that have been widely studied in the field of embryogenesis. Recent work has established a critical role for these pathways in brain development, especially of midbrain dopaminergic neurones. However, the fundamental importance of Wnt signaling for the normal function of mature neurones in the adult central nervous system has also lately been demonstrated by an increasing number of studies. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and is currently incurable. This debilitating disease is characterized by the progressive loss of a subset of midbrain dopaminergic neurones in the substantia nigra leading to typical extrapyramidal motor symptoms. The aetiology of PD is poorly understood but work performed over the last two decades has identified a growing number of genetic defects that underlie this condition. Here we review a growing body of data connecting genes implicated in PD--most notably the PARK genes--with Wnt signaling. These observations provide clues to the normal function of these proteins in healthy neurones and suggest that deregulated Wnt signaling might be a frequent pathomechanism leading to PD. These observations have implications for the pathogenesis and treatment of neurodegenerative diseases in general

    The Use of Antihypertensive Medication and the Risk of Breast Cancer in a Case-Control Study in a Spanish Population: The MCC-Spain Study

    Get PDF
    The evidence on the relationship between breast cancer and different types of antihypertensive drugs taken for at least 5 years is limited and inconsistent. Furthermore, the debate has recently been fueled again with new data reporting an increased risk of breast cancer among women with a long history of use of antihypertensive drugs compared with nonusers
    corecore