22 research outputs found

    Impacts of climatic variation on the growth of black spruce across the forest-tundra ecotone : positive effects of warm growing seasons and heat waves are offset by late spring frosts

    Get PDF
    Climate strongly limits the physiological processes of trees near their range limits, leading to increased growth sensitivity. Northeastern North America is experiencing considerable warming, so the growth of trees near the northern treeline represents a key indicator of forest responses to climate change. However, tree-ring series and corresponding climatic data are scarce across the forest-tundra ecotone when compared to southern boreal regions, resulting in fewer studies on growth-climate relationships focused on this ecotone. Using daily climatic data, we identified trends in growing season heat accumulation and the intensity of acute climatic events over the last several decades in the southern and the northern parts of the forest-tundra ecotone in northeastern North America, and investigated their influence on black spruce radial growth. We found that black spruce trees responded positively to the increase in growing season temperatures and heat wave intensity, suggesting that growth is currently limited by suboptimal temperatures. While tree growth in the southern region generally benefited from warm spring temperatures, vulnerability to late spring frosts reduced tree growth in the northern region and increased probability of abrupt growth decline. In this region, late spring frosts offset approximately half of the additional growth that would otherwise occur over the course of a warm growing season. This vulnerability of northern trees may result from local adaptations to short growing seasons, which initiate biological activities at colder temperatures in the spring. Overall, our results highlight the need to explicitly incorporate acute climatic events into modeling efforts in order to refine our understanding of the impact of climate change on forest dynamics

    Opportunities and limitations of thinning to increase resistance and resilience of trees and forests to global change

    Get PDF
    We reviewed recent literature to identify the positive and negative effects of thinning on both stand- and tree-level resistance and resilience to four stressors that are expected to increase in frequency and/or severity due to global change: (1) drought, (2) fire, (3) insects and pathogens, and (4) wind. There is strong evidence that thinning, particularly heavy thinning, reduces the impact of drought and also the risk and severity of fire when harvest slash is burned or removed. Thinning also increases the growth and vigor of residual trees, making them less susceptible to eruptive insects and pathogens, while targeted removal of host species, susceptible individuals and infected trees can slow the spread of outbreaks. However, the evidence that thinning has consistent positive effects is limited to a few insects and pathogens, and negative effects on root rot infection severity were also reported. At this point, our review reveals insufficient evidence from rigorous experiments to draw general conclusions. Although thinning initially increases the risk of windthrow, there is good evidence that thinning young stands reduces the long-term risk by promoting the development of structural roots and favouring the acclimation of trees to high wind loads. While our review suggests that thinning should not be promoted as a tool that will universally increase the resistance and resilience of forests, current evidence suggests that thinning could still be an effective tool to reduce forest vulnerability to several stressors, creating a window of opportunity to implement longer term adaptive management strategies such as assisted migration. We highlight knowledge gaps that should be targeted by future research to assess the potential contribution of thinning to adaptive forest management. One of these gaps is that studies from boreal and tropical regions are drastically underrepresented, with almost no studies conducted in Asia and the southern hemisphere. Empirical evidence from these regions is urgently needed to allow broader-scale conclusions

    The changing culture of silviculture

    Get PDF
    Changing climates are altering the structural and functional components of forest ecosystems at an unprecedented rate. Simultaneously, we are seeing a diversification of public expectations on the broader sustainable use of forest resources beyond timber production. As a result, the science and art of silviculture needs to adapt to these changing realities. In this piece, we argue that silviculturists are gradually shifting from the application of empirically derived silvicultural scenarios to new sets of approaches, methods and practices, a process that calls for broadening our conception of silviculture as a scientific discipline. We propose a holistic view of silviculture revolving around three key themes: observe, anticipate and adapt. In observe, we present how recent advances in remote sensing now enable silviculturists to observe forest structural, compositional and functional attributes in near-real-time, which in turn facilitates the deployment of efficient, targeted silvicultural measures in practice that are adapted to rapidly changing constraints. In anticipate, we highlight the importance of developing state-of-the-art models designed to take into account the effects of changing environmental conditions on forest growth and dynamics. In adapt, we discuss the need to provide spatially explicit guidance for the implementation of adaptive silvicultural actions that are efficient, cost-effective and socially acceptable. We conclude by presenting key steps towards the development of new tools and practical knowledge that will ensure meeting societal demands in rapidly changing environmental conditions. We classify these actions into three main categories: reexamining existing silvicultural trials to identify key stand attributes associated with the resistance and resilience of forests to multiple stressors, developing technological workflows and infrastructures to allow for continuous forest inventory updating frameworks, and implementing bold, innovative silvicultural trials in consultation with the relevant communities where a range of adaptive silvicultural strategies are tested. In this holistic perspective, silviculture can be defined as the science of observing forest condition and anticipating its development to apply tending and regeneration treatments adapted to a multiplicity of desired outcomes in rapidly changing realities

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Forest landscape dynamics: Consequences of interspecific variation in drought and shade tolerance

    No full text
    This thesis examines the patterns and dynamics of forest landscapes in the transition oak-northern hardwoods regions of central New England. Forest landscape patterns have long drawn the attention of ecologists seeking to understand how environmental heterogeneity influences the distribution and abundance of species. One of the most striking and well studied patterns of forest landscapes is species zonation along soil moisture gradients. Yet the underlying processes that give rise to zonation patterns are not fully understood because the distribution and abundance of tree species is determined both by their response to abiotic heterogeneity and by their competitive interactions with one another.^ This thesis presents novel approaches to assessing species responses to soil moisture and modeling the community- and landscape-level consequences of species differences in drought and shade tolerance. Chapter 1 examines the response of transplanted saplings to natural variation in soil moisture and the use of transplant experiments to assess the limits of species distributions. Chapter 2 examines the growth and mortality of naturally occurring saplings to quantify interspecific variation in drought and shade tolerance. Chapter 3 develops an individual-based model to simulate the competitive dynamics and distribution of tree species along soil moisture gradients. The patterns predicted by the model are also compared to observed patterns of forest composition using TM satellite imagery to classify extant forest canopy types.^ The results indicate that differences in drought tolerance among the study species are determined largely by interspecific variation in mortality rather than growth. Furthermore, the results suggest that there is not a strict trade-off between shade tolerance and drought tolerance. Finally, the simulation results show that interspecific variation in drought and shade tolerance can in part explain observed patterns in the distribution and abundance of species across the landscape.

    A mathematical framework to describe the effect of beam incidence angle on metrics derived from airborne LiDAR : the case of forest canopies approaching turbid medium behaviour

    No full text
    Airborne laser scanning (LiDAR) is used in forest inventories to quantify stand structure with three-dimensional point clouds. However, the 3D distribution of the point clouds depends not only on stand structure, but also on scan angle, because the probability for an oblique beam to be reflected by the canopy increases with the distance it must travel through the canopy. Thus, the canopy appears to increase in density as the incidence angle increases, all else being equal. The resulting variation between and within datasets can induce bias in LiDAR metrics derived from the vertical distribution of points. In this study, we modelled the effect of scan angle on the vertical structure of the point clouds to predict the bias of metrics derived from points sampled off-nadir. Comparison with paired observations from different flightlines (off- and at-nadir observations of the same point) demonstrated that the model accurately reproduced the bias of metrics calculated for a northern hardwood forest with relatively continuous canopy. Thus, the model could be used to correct the bias of LiDAR metrics, and provides a mathematical framework that could be used to inform the selection of maximum incidence angle in LiDAR surveys, considering the trade-off between decreasing acquisition costs and obtaining unbiased measurements

    Removing bias from LiDAR-based estimates of canopy height : accounting for the effects of pulse density and footprint size

    Get PDF
    Airborne laser scanning (LiDAR) is used in forest inventories to quantify stand structure with three dimensional point clouds. However, the structure of point clouds depends not only on stand structure, but also on the LiDAR instrument, its settings, and the pattern of flight. The resulting variation between and within datasets (particularly variation in pulse density and footprint size) can induce spurious variation in LiDAR metrics such as maximum height (hmax) and mean height of the canopy surface model (Cmean). In this study, we first compare two LiDAR datasets acquired with different parameters, and observe that hmax and Cmean are 56 cm and 1.0 m higher, respectively, when calculated using the high-density dataset with a small footprint. Then, we present a model that explains the observed bias using probability theory, and allows us to recompute the metrics as if the density of pulses were infinite and the size of the two footprints were equivalent. The model is our first step in developing methods for correcting various LiDAR metrics that are used for area-based prediction of stand structure. Such methods may be particularly useful for monitoring forest growth over time, given that acquisition parameters often change between inventories

    Responses of Red-Backed Salamander (Plethodon cinereus) Abundance in a Northern Hardwood Forest

    No full text
    Wood ash may be an effective soil amendment in North America to restore acidified and low nutrient forest soils, but little research exists beyond its effects on soil and plants. Eastern red-backed salamander (Plethodon cinereus) abundance was assessed in a northern hardwood forest 1 year following an ash addition field trial. Plots were established with fly and bottom ash treatments of 0, 1, 4, and 8 Mg ha-1 (n=4), and cover boards were positioned both with and without ash beneath. One year following ash additions salamander abundance had increased under boards with fly ash beneath, and bottom ash had no effect. Soil pH and EC increased under cover boards with ash beneath them and for uncovered soil, and the effects were strongest under cover boards with ash beneath. The effects of ash were generally stronger at higher dosages, and fly ash was stronger than bottom ash. The moisture holding capacity of fly ash was 60% higher than the soil and for bottom ash was 63% lower, but they had little effect on moisture of the forest floor. These results suggest that ash altered salamander abundance via soil pH and moisture, and would not inhibit their movement over the forest floor.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Quantifying the probability of decline in quality : implications for selection management in northern hardwood forests

    No full text
    Northern hardwoods are susceptible to a wide range of defects that can reduce the amount of sound wood with desirable qualities, such as the clear sapwood of sugar maple trees. Yet, the rate at which trees decline in quality due to the development of such defects has never been quantified in northern hardwood forests due to a dearth of repeat inventories that record the appearance of defects over time. As a result, it remains uncertain whether, and how, selection management reduces the probability of decline in quality. In this study, we quantify the rate at which trees decline in quality due to the development of defects, and we test several hypotheses regarding the influence of selection management on quality. Our results show that (1) the probability of decline in quality increases as trees grow larger; (2) crown dieback also increases the probability of decline in quality; (3) the probability of decline in quality is slightly lower in managed stands than in unmanaged stands, and (4) the probability of decline in quality increases with the mean annual temperature of the site. Finally, we combined our estimates of the probability of decline in quality with previous estimates of the probability of mortality to assess the overall risk associated with retaining trees of different species, sizes, and vigour profiles. The resulting metric can inform efforts to improve the management of northern hardwood forests by providing an integrated estimate of the risk that the value of a tree will be reduced, or eliminated, due to mortality or decline in quality
    corecore