212 research outputs found

    Calorie intake, olive oil consumption and mammographic density among Spanish women

    Get PDF
    High mammographic density (MD) is one of the main risk factors for development of breast cancer. To date, however, relatively few studies have evaluated the association between MD and diet. In this cross-sectional study, we assessed the association between MD (measured using Boyd's semiquantitative scale with five categories: 75%) and diet (measured using a food frequency questionnaire validated in a Spanish population) among 3,548 peri- and postmenopausal women drawn from seven breast cancer screening programs in Spain. Multivariate ordinal logistic regression models, adjusted for age, body mass index (BMI), energy intake and protein consumption as well as other confounders, showed an association between greater calorie intake and greater MD [odds ratio (OR) = 1.23; 95% confidence interval (CI) = 1.10-1.38, for every increase of 500 cal/day], yet high consumption of olive oil was nevertheless found to reduce the prevalence of high MD (OR = 0.86;95% CI = 0.76-0.96, for every increase of 22 g/day in olive oil consumption); and, while greater intake of whole milk was likewise associated with higher MD (OR = 1.10; 95%CI 1.00-1.20, for every increase of 200 g/day), higher consumption of protein (OR = 0.89; 95% CI 0.80-1.00, for every increase of 30 g/day) and white meat (p for trend 0.041) was found to be inversely associated with MD. Our study, the largest to date to assess the association between diet and MD, suggests that MD is associated with modifiable dietary factors, such as calorie intake and olive oil consumption. These foods could thus modulate the prevalence of high MD, and important risk marker for breast cancer.Grant sponsor: Spain’s Health Research Fund (Fondo de Investigación Sanitaria);Grant numbers:FIS PI060386 & FIS PIS09/01006; Collaboration Agreement between Astra-Zeneca and the Carlos III Institute of Health (Instituto de Salud Carlos III);Grant number: EPY 1306/06; Spanish Federation of Breast Cancer patients; Grant number: FECMA 485 EPY 1170-10S

    Application of Tensor Neural Networks to Pricing Bermudan Swaptions

    Full text link
    The Cheyette model is a quasi-Gaussian volatility interest rate model widely used to price interest rate derivatives such as European and Bermudan Swaptions for which Monte Carlo simulation has become the industry standard. In low dimensions, these approaches provide accurate and robust prices for European Swaptions but, even in this computationally simple setting, they are known to underestimate the value of Bermudan Swaptions when using the state variables as regressors. This is mainly due to the use of a finite number of predetermined basis functions in the regression. Moreover, in high-dimensional settings, these approaches succumb to the Curse of Dimensionality. To address these issues, Deep-learning techniques have been used to solve the backward Stochastic Differential Equation associated with the value process for European and Bermudan Swaptions; however, these methods are constrained by training time and memory. To overcome these limitations, we propose leveraging Tensor Neural Networks as they can provide significant parameter savings while attaining the same accuracy as classical Dense Neural Networks. In this paper we rigorously benchmark the performance of Tensor Neural Networks and Dense Neural Networks for pricing European and Bermudan Swaptions, and we show that Tensor Neural Networks can be trained faster than Dense Neural Networks and provide more accurate and robust prices than their Dense counterparts.Comment: 15 pages, 9 figures, 2 table

    Immunogenetic characterization of clonal plasma cells in systemic light-chain amyloidosis

    Get PDF
    This study was supported by the Centro de InvestigaciĂłn BiomĂ©dica en Red—Área de OncologĂ­a—del Instituto de Salud Carlos III (CIBERONC; CB16/12/00369; and CB16/12/00489), Instituto de Salud Carlos III/SubdirecciĂłn General de InvestigaciĂłn Sanitaria (FIS No. PI13/02196), AsociaciĂłn Española Contra el CĂĄncer (GCB120981SAN and the Accelerator Award), CRIS against Cancer foundation grant 2014/0120, and the Black Swan Research Initiative of the International Myeloma Foundation.Peer reviewe

    A Neutrophil Timer Coordinates Immune Defense and Vascular Protection

    Get PDF
    Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection.We thank all members of the Hidalgo Lab for discussion and insightful comments; J.M. Ligos, R. Nieto, and M. Viton for help with sorting and cytometric analyses; I. Ortega and E. Santos for animal husbandry; D. Rico, M.J. Gomez, C. Torroja, and F. Sanchez-Cabo for insightful comments and help with transcriptomic analyses; V. Labrador, E. Arza, A.M. Santos, and the Microscopy Unit of the CNIC for help with microscopy; S. Aznar-Benitah, U. Albrecht, Q.-J. Meng, B. Staels, and H. Duez for the generous gift of mice; J.A. Enriquez and J. Avila for scientific insights; and J.M. Garcia and A. Diez de la Cortina for art. This study was supported by Intramural grants from A* STAR to L.G.N., BES-2013-065550 to J.M.A., BES-2010-032828 to M.C.-A, and JCI-2012-14147 to L.A.W (all from Ministerio de Economia, Industria y Competitividad; MEIC). Additional MEIC grants were SAF2014-61993-EXP to C.L.-R.; SAF2015-68632-R to M.A.M. and SAF-2013-42920R and SAF2016-79040Rto D.S. D.S. also received 635122-PROCROP H2020 from the European Commission and ERC CoG 725091 from the European Research Council (ERC). ERC AdG 692511 PROVASC from the ERC and SFB1123-A1 from the Deutsche Forschungsgemeinschaft were given to C.W.; MHA VD1.2/81Z1600212 from the German Center for Cardiovascular Research (DZHK) was given to C.W. and O.S.; SFB1123-A6 was given to O.S.; SFB914-B08 was given to O.S. and C.W.; and INST 211/604-2, ZA 428/12-1, and ZA 428/13-1 were given to A.Z. This study was also supported by PI12/00494 from Fondo de Investigaciones Sanitarias (FIS) to C.M.; PI13/01979, Cardiovascular Network grant RD 12/0042/0054, and CIBERCV to B.I.; SAF2015-65607-R, SAF2013-49662-EXP, and PCIN-2014-103 from MEIC; and co-funding by Fondo Europeo de Desarrollo Regional (FEDER) to A.H. The CNIC is supported by the MEIC and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505).S

    Observation of two new Ξb−\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π−\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb−1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξbâ€Č−\Xi_b^{\prime -} and Ξb∗−\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξbâ€Č−)−m(Ξb0)−m(π−)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb∗−)−m(Ξb0)−m(π−)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb∗−)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξbâ€Č−)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Study of B−→DK−π+π−B^{-}\to DK^-\pi^+\pi^- and B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- decays and determination of the CKM angle Îł\gamma

    Get PDF
    We report a study of the suppressed B−→DK−π+π−B^-\to DK^-\pi^+\pi^- and favored B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- decays, where the neutral DD meson is detected through its decays to the K∓π±K^{\mp}\pi^{\pm} and CP-even K+K−K^+K^- and π+π−\pi^+\pi^- final states. The measurement is carried out using a proton-proton collision data sample collected by the LHCb experiment, corresponding to an integrated luminosity of 3.0~fb−1^{-1}. We observe the first significant signals in the CP-even final states of the DD meson for both the suppressed B−→DK−π+π−B^-\to DK^-\pi^+\pi^- and favored B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- modes, as well as in the doubly Cabibbo-suppressed D→K+π−D\to K^+\pi^- final state of the B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- decay. Evidence for the ADS suppressed decay B−→DK−π+π−B^{-}\to DK^-\pi^+\pi^-, with D→K+π−D\to K^+\pi^-, is also presented. From the observed yields in the B−→DK−π+π−B^-\to DK^-\pi^+\pi^-, B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- and their charge conjugate decay modes, we measure the value of the weak phase to be Îł=(74−19+20)o\gamma=(74^{+20}_{-19})^{\rm o}. This is one of the most precise single-measurement determinations of Îł\gamma to date.Comment: 22 pages, 9 figures; All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm

    Precision measurement of CPCP violation in Bs0→J/ψK+K−B_s^0 \to J/\psi K^+K^- decays

    Get PDF
    The time-dependent CPCP asymmetry in Bs0→J/ψK+K−B_s^0 \to J/\psi K^+K^- decays is measured using pppp collision data, corresponding to an integrated luminosity of 3.03.0fb−1^{-1}, collected with the LHCb detector at centre-of-mass energies of 77 and 88TeV. In a sample of 96 000 Bs0→J/ψK+K−B_s^0 \to J/\psi K^+K^- decays, the CPCP-violating phase ϕs\phi_s is measured, as well as the decay widths ΓL\Gamma_{L} and ΓH\Gamma_{H} of the light and heavy mass eigenstates of the Bs0−Bˉs0B_s^0-\bar{B}_s^0 system. The values obtained are ϕs=−0.058±0.049±0.006\phi_s = -0.058 \pm 0.049 \pm 0.006 rad, Γs≡(ΓL+ΓH)/2=0.6603±0.0027±0.0015\Gamma_s \equiv (\Gamma_{L}+\Gamma_{H})/2 = 0.6603 \pm 0.0027 \pm 0.0015ps−1^{-1}, andΔΓs≡ΓL−ΓH=0.0805±0.0091±0.0032\Delta\Gamma_s \equiv \Gamma_{L} - \Gamma_{H} = 0.0805 \pm 0.0091 \pm 0.0032ps−1^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements of those quantities to date. A combined analysis with Bs0→J/ψπ+π−B_s^{0} \to J/\psi \pi^+\pi^- decays gives ϕs=−0.010±0.039\phi_s = -0.010 \pm 0.039 rad. All measurements are in agreement with the Standard Model predictions. For the first time the phase ϕs\phi_s is measured independently for each polarisation state of the K+K−K^+K^- system and shows no evidence for polarisation dependence.Comment: 6 figure

    First observation and amplitude analysis of the B−→D+K−π−B^{-}\to D^{+}K^{-}\pi^{-} decay

    Get PDF
    The B−→D+K−π−B^{-}\to D^{+}K^{-}\pi^{-} decay is observed in a data sample corresponding to 3.0 fb−13.0~\rm{fb}^{-1} of pppp collision data recorded by the LHCb experiment during 2011 and 2012. Its branching fraction is measured to be B(B−→D+K−π−)=(7.31±0.19±0.22±0.39)×10−5{\cal B}(B^{-}\to D^{+}K^{-}\pi^{-}) = (7.31 \pm 0.19 \pm 0.22 \pm 0.39) \times 10^{-5} where the uncertainties are statistical, systematic and from the branching fraction of the normalisation channel B−→D+π−π−B^{-}\to D^{+}\pi^{-}\pi^{-}, respectively. An amplitude analysis of the resonant structure of the B−→D+K−π−B^{-}\to D^{+}K^{-}\pi^{-} decay is used to measure the contributions from quasi-two-body B−→D0∗(2400)0K−B^{-}\to D_{0}^{*}(2400)^{0}K^{-}, B−→D2∗(2460)0K−B^{-}\to D_{2}^{*}(2460)^{0}K^{-}, and B−→DJ∗(2760)0K−B^{-}\to D_{J}^{*}(2760)^{0}K^{-} decays, as well as from nonresonant sources. The DJ∗(2760)0D_{J}^{*}(2760)^{0} resonance is determined to have spin~1.Comment: 39 pages, 10 figures, submitted to Phys. Rev. D. Updated following erratum 10.1103/PhysRevD.93.11990

    Amplitude analysis of B0→Dˉ0K+π−B^0 \rightarrow \bar{D}^0 K^+ \pi^- decays

    Get PDF
    The Dalitz plot distribution of B0→Dˉ0K+π−B^0 \rightarrow \bar{D}^0 K^+ \pi^- decays is studied using a data sample corresponding to 3.0fb−13.0\rm{fb}^{-1} of pppp collision data recorded by the LHCb experiment during 2011 and 2012. The data are described by an amplitude model that contains contributions from intermediate K∗(892)0K^*(892)^0, K∗(1410)0K^*(1410)^0, K2∗(1430)0K^*_2(1430)^0 and D2∗(2460)−D^*_2(2460)^- resonances. The model also contains components to describe broad structures, including the K0∗(1430)0K^*_0(1430)^0 and D0∗(2400)−D^*_0(2400)^- resonances, in the KπK\pi S-wave and the DπD\pi S- and P-waves. The masses and widths of the D0∗(2400)−D^*_0(2400)^- and D2∗(2460)−D^*_2(2460)^- resonances are measured, as are the complex amplitudes and fit fractions for all components included in the amplitude model. The model obtained will be an integral part of a future determination of the angle Îł\gamma of the CKM quark mixing matrix using B0→DK+π−B^0 \rightarrow D K^+ \pi^- decays.Comment: 33 pages, 12 figures; updated for publicatio

    Differential branching fraction and angular analysis of Λb0→ΛΌ+Ό−\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^- decays

    Get PDF
    The differential branching fraction of the rare decay Λb0→ΛΌ+Ό−\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^- is measured as a function of q2q^{2}, the square of the dimuon invariant mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of 3.0 \mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is observed in the q2q^2 region below the square of the J/ψJ/\psi mass. Integrating over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+ 0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1}, where the uncertainties are statistical, systematic and due to the normalisation mode, Λb0→J/ψΛ\Lambda^{0}_{b} \rightarrow J/\psi \Lambda, respectively. In the q2q^2 intervals where the signal is observed, angular distributions are studied and the forward-backward asymmetries in the dimuon (AFBlA^{l}_{\rm FB}) and hadron (AFBhA^{h}_{\rm FB}) systems are measured for the first time. In the range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} = -0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} = -0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde
    • 

    corecore